{"title":"DPaxos:管理数据更接近用户的低延迟和移动应用程序","authors":"Faisal Nawab, D. Agrawal, A. E. Abbadi","doi":"10.1145/3183713.3196928","DOIUrl":null,"url":null,"abstract":"In this paper, we propose Dynamic Paxos (DPaxos), a Paxos-based consensus protocol to manage access to partitioned data across globally-distributed datacenters and edge nodes. DPaxos is intended to implement a State Machine Replication component in data management systems for the edge. DPaxos targets the unique opportunities of utilizing edge computing resources to support emerging applications with stringent mobility and real-time requirements such as Augmented and Virtual Reality and vehicular applications. The main objective of DPaxos is to reduce the latency of serving user requests, recovering from failures, and reacting to mobility. DPaxos achieves these objectives by a few proposed changes to the traditional Paxos protocol. Most notably, DPaxos proposes a dynamic allocation of quorums ( i.e. , groups of nodes) that are needed for Paxos Leader Election. Leader Election quorums in DPaxos are smaller than traditional Paxos and expand only in the presence of conflicts.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"DPaxos: Managing Data Closer to Users for Low-Latency and Mobile Applications\",\"authors\":\"Faisal Nawab, D. Agrawal, A. E. Abbadi\",\"doi\":\"10.1145/3183713.3196928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose Dynamic Paxos (DPaxos), a Paxos-based consensus protocol to manage access to partitioned data across globally-distributed datacenters and edge nodes. DPaxos is intended to implement a State Machine Replication component in data management systems for the edge. DPaxos targets the unique opportunities of utilizing edge computing resources to support emerging applications with stringent mobility and real-time requirements such as Augmented and Virtual Reality and vehicular applications. The main objective of DPaxos is to reduce the latency of serving user requests, recovering from failures, and reacting to mobility. DPaxos achieves these objectives by a few proposed changes to the traditional Paxos protocol. Most notably, DPaxos proposes a dynamic allocation of quorums ( i.e. , groups of nodes) that are needed for Paxos Leader Election. Leader Election quorums in DPaxos are smaller than traditional Paxos and expand only in the presence of conflicts.\",\"PeriodicalId\":20430,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Management of Data\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Management of Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3183713.3196928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3196928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DPaxos: Managing Data Closer to Users for Low-Latency and Mobile Applications
In this paper, we propose Dynamic Paxos (DPaxos), a Paxos-based consensus protocol to manage access to partitioned data across globally-distributed datacenters and edge nodes. DPaxos is intended to implement a State Machine Replication component in data management systems for the edge. DPaxos targets the unique opportunities of utilizing edge computing resources to support emerging applications with stringent mobility and real-time requirements such as Augmented and Virtual Reality and vehicular applications. The main objective of DPaxos is to reduce the latency of serving user requests, recovering from failures, and reacting to mobility. DPaxos achieves these objectives by a few proposed changes to the traditional Paxos protocol. Most notably, DPaxos proposes a dynamic allocation of quorums ( i.e. , groups of nodes) that are needed for Paxos Leader Election. Leader Election quorums in DPaxos are smaller than traditional Paxos and expand only in the presence of conflicts.