高适应度群体(HFP)与遗传算法求解单位承诺

A. S. Rajawat, M. Sharma, V. Sharma
{"title":"高适应度群体(HFP)与遗传算法求解单位承诺","authors":"A. S. Rajawat, M. Sharma, V. Sharma","doi":"10.1109/COMPTELIX.2017.8003953","DOIUrl":null,"url":null,"abstract":"This paper presents an improved solution to optimal unit commitment (UC) by seeding best initial high fitness population (HFP) near or equal to global optimum solution to Genetic algorithm (GA). To direct the limited minimization option left in HFP in better way, easy GA mutation scheme is proposed that produces constrained satisfied populations, handle typical spinning reserve/time constraints and increases diversity option for GA to work near global optimum. The proposed algorithm performance is verified for systems of one-day scheduling period for 10–100 generating units. The test results reveal solution very near or close to optimum value achieved in initial population before the GA iteration starts. Result demonstrate the superiority of proposed scheme in term of number of iteration, cost and computation time then any other conventional methods / other computing techniques.","PeriodicalId":6917,"journal":{"name":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","volume":"177 1","pages":"140-145"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High fitness population (HFP) with GA solution for solving unit commitment\",\"authors\":\"A. S. Rajawat, M. Sharma, V. Sharma\",\"doi\":\"10.1109/COMPTELIX.2017.8003953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an improved solution to optimal unit commitment (UC) by seeding best initial high fitness population (HFP) near or equal to global optimum solution to Genetic algorithm (GA). To direct the limited minimization option left in HFP in better way, easy GA mutation scheme is proposed that produces constrained satisfied populations, handle typical spinning reserve/time constraints and increases diversity option for GA to work near global optimum. The proposed algorithm performance is verified for systems of one-day scheduling period for 10–100 generating units. The test results reveal solution very near or close to optimum value achieved in initial population before the GA iteration starts. Result demonstrate the superiority of proposed scheme in term of number of iteration, cost and computation time then any other conventional methods / other computing techniques.\",\"PeriodicalId\":6917,\"journal\":{\"name\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"volume\":\"177 1\",\"pages\":\"140-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer, Communications and Electronics (Comptelix)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPTELIX.2017.8003953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer, Communications and Electronics (Comptelix)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPTELIX.2017.8003953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过在遗传算法(GA)的全局最优解附近或等于全局最优解处播种最优初始高适应度种群(HFP),提出了一种改进的最优单元承诺(UC)的求解方法。为了更好地指导HFP中剩余的有限最小化选项,提出了一种简单的遗传突变方案,该方案产生有约束的满意种群,处理典型的旋转储备/时间约束,并增加遗传算法的多样性选项,使其接近全局最优。在10-100台机组的1天调度周期系统中验证了算法的性能。测试结果表明,在遗传算法迭代开始之前,解非常接近或接近初始种群所达到的最优值。结果表明,该方案在迭代次数、成本和计算时间等方面优于其他传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High fitness population (HFP) with GA solution for solving unit commitment
This paper presents an improved solution to optimal unit commitment (UC) by seeding best initial high fitness population (HFP) near or equal to global optimum solution to Genetic algorithm (GA). To direct the limited minimization option left in HFP in better way, easy GA mutation scheme is proposed that produces constrained satisfied populations, handle typical spinning reserve/time constraints and increases diversity option for GA to work near global optimum. The proposed algorithm performance is verified for systems of one-day scheduling period for 10–100 generating units. The test results reveal solution very near or close to optimum value achieved in initial population before the GA iteration starts. Result demonstrate the superiority of proposed scheme in term of number of iteration, cost and computation time then any other conventional methods / other computing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信