A. Arjmand, S. Meshgini, R. Afrouzian, A. Farzamnia
{"title":"基于k均值聚类和布谷鸟搜索优化的乳腺肿瘤分割","authors":"A. Arjmand, S. Meshgini, R. Afrouzian, A. Farzamnia","doi":"10.1109/ICCKE48569.2019.8964794","DOIUrl":null,"url":null,"abstract":"Today, there are various methods for detecting tumors in breasts. But researchers are still trying to find an exact automatic way to segment the tumors from breast images. In this paper we propose a clustering-based algorithm for automatic tumor segmentation in the MRI samples. In the proposed method, we use k-means clustering algorithm for segmentation and also we use cuckoo search optimization (CSO) algorithm to initialize centroids in the k-means algorithm. We have used RIDER breast dataset to evaluate the proposed method and results clearly show that our algorithm outperforms similar methods such as simple k-means clustering algorithm and Fuzzy C-Means (FCM).","PeriodicalId":6685,"journal":{"name":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"35 1","pages":"305-308"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Breast Tumor Segmentation Using K-Means Clustering and Cuckoo Search Optimization\",\"authors\":\"A. Arjmand, S. Meshgini, R. Afrouzian, A. Farzamnia\",\"doi\":\"10.1109/ICCKE48569.2019.8964794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, there are various methods for detecting tumors in breasts. But researchers are still trying to find an exact automatic way to segment the tumors from breast images. In this paper we propose a clustering-based algorithm for automatic tumor segmentation in the MRI samples. In the proposed method, we use k-means clustering algorithm for segmentation and also we use cuckoo search optimization (CSO) algorithm to initialize centroids in the k-means algorithm. We have used RIDER breast dataset to evaluate the proposed method and results clearly show that our algorithm outperforms similar methods such as simple k-means clustering algorithm and Fuzzy C-Means (FCM).\",\"PeriodicalId\":6685,\"journal\":{\"name\":\"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"volume\":\"35 1\",\"pages\":\"305-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCKE48569.2019.8964794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE48569.2019.8964794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Breast Tumor Segmentation Using K-Means Clustering and Cuckoo Search Optimization
Today, there are various methods for detecting tumors in breasts. But researchers are still trying to find an exact automatic way to segment the tumors from breast images. In this paper we propose a clustering-based algorithm for automatic tumor segmentation in the MRI samples. In the proposed method, we use k-means clustering algorithm for segmentation and also we use cuckoo search optimization (CSO) algorithm to initialize centroids in the k-means algorithm. We have used RIDER breast dataset to evaluate the proposed method and results clearly show that our algorithm outperforms similar methods such as simple k-means clustering algorithm and Fuzzy C-Means (FCM).