CUDA内核参数的自动限制

R. Diarra
{"title":"CUDA内核参数的自动限制","authors":"R. Diarra","doi":"10.1145/3238147.3241533","DOIUrl":null,"url":null,"abstract":"Many procedural languages, such as C and C++, have pointers. Pointers are powerful and convenient, but pointer aliasing still hinders compiler optimizations, despite several years of research on pointer aliasing analysis. Because alias analysis is a difficult task and results are not always accurate, the ISO C standard 99 has added a keyword, named restrict to allow the programmer to specify non-aliasing as an aid to the compiler's optimizer and to thereby possibly improve performance. The task of annotating pointers with the restrict keyword is still left to the programmer. This task is, in general, tedious and prone to errors especially since the C does not perform any verification to ensure that restrict keyword is not misplaced. In this paper we present a static analysis tool that (i) finds CUDA kernels call sites in which actual parameters do not alias; (ii) clones the kernels called at such sites; (iii) after performing an alias analysis in these kernels, adds the restrict keyword to their arguments; and (iv) replaces the original kernel call by a call to the optimized clone whenever possible.","PeriodicalId":6622,"journal":{"name":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"105 1","pages":"928-931"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards Automatic Restrictification of CUDA Kernel Arguments\",\"authors\":\"R. Diarra\",\"doi\":\"10.1145/3238147.3241533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many procedural languages, such as C and C++, have pointers. Pointers are powerful and convenient, but pointer aliasing still hinders compiler optimizations, despite several years of research on pointer aliasing analysis. Because alias analysis is a difficult task and results are not always accurate, the ISO C standard 99 has added a keyword, named restrict to allow the programmer to specify non-aliasing as an aid to the compiler's optimizer and to thereby possibly improve performance. The task of annotating pointers with the restrict keyword is still left to the programmer. This task is, in general, tedious and prone to errors especially since the C does not perform any verification to ensure that restrict keyword is not misplaced. In this paper we present a static analysis tool that (i) finds CUDA kernels call sites in which actual parameters do not alias; (ii) clones the kernels called at such sites; (iii) after performing an alias analysis in these kernels, adds the restrict keyword to their arguments; and (iv) replaces the original kernel call by a call to the optimized clone whenever possible.\",\"PeriodicalId\":6622,\"journal\":{\"name\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"105 1\",\"pages\":\"928-931\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3238147.3241533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3238147.3241533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多过程语言,如C和c++,都有指针。指针功能强大且方便,但是指针混叠仍然会阻碍编译器的优化,尽管对指针混叠分析已经进行了几年的研究。由于别名分析是一项困难的任务,结果并不总是准确的,ISO C标准99增加了一个关键字,名为restrict,以允许程序员指定非混叠作为编译器优化器的辅助,从而可能提高性能。用restrict关键字注释指针的任务仍然留给程序员。一般来说,这项任务很繁琐,而且容易出错,特别是因为C不执行任何验证以确保restrict关键字没有放错位置。在本文中,我们提出了一个静态分析工具,它(i)发现CUDA内核调用站点中实际参数不别名;(ii)克隆在这些位点被召唤的籽粒;(iii)在这些内核中执行别名分析后,将restrict关键字添加到它们的参数中;(iv)在可能的情况下,用对优化的克隆的调用替换原来的内核调用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Automatic Restrictification of CUDA Kernel Arguments
Many procedural languages, such as C and C++, have pointers. Pointers are powerful and convenient, but pointer aliasing still hinders compiler optimizations, despite several years of research on pointer aliasing analysis. Because alias analysis is a difficult task and results are not always accurate, the ISO C standard 99 has added a keyword, named restrict to allow the programmer to specify non-aliasing as an aid to the compiler's optimizer and to thereby possibly improve performance. The task of annotating pointers with the restrict keyword is still left to the programmer. This task is, in general, tedious and prone to errors especially since the C does not perform any verification to ensure that restrict keyword is not misplaced. In this paper we present a static analysis tool that (i) finds CUDA kernels call sites in which actual parameters do not alias; (ii) clones the kernels called at such sites; (iii) after performing an alias analysis in these kernels, adds the restrict keyword to their arguments; and (iv) replaces the original kernel call by a call to the optimized clone whenever possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信