Saeid Janizadeh, S. Bateni, C. Jun, Ju-Hun Im, Hao-Thing Pai, S. Band, Amir H. Mosavi
{"title":"将四种不同的集成算法与广义线性模型(GLM)相结合用于森林火灾易感性预测","authors":"Saeid Janizadeh, S. Bateni, C. Jun, Ju-Hun Im, Hao-Thing Pai, S. Band, Amir H. Mosavi","doi":"10.1080/19475705.2023.2206512","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":51283,"journal":{"name":"Geomatics Natural Hazards & Risk","volume":"47 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combination four different ensemble algorithms with the generalized linear model (GLM) for predicting forest fire susceptibility\",\"authors\":\"Saeid Janizadeh, S. Bateni, C. Jun, Ju-Hun Im, Hao-Thing Pai, S. Band, Amir H. Mosavi\",\"doi\":\"10.1080/19475705.2023.2206512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":51283,\"journal\":{\"name\":\"Geomatics Natural Hazards & Risk\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomatics Natural Hazards & Risk\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/19475705.2023.2206512\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomatics Natural Hazards & Risk","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/19475705.2023.2206512","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
期刊介绍:
The aim of Geomatics, Natural Hazards and Risk is to address new concepts, approaches and case studies using geospatial and remote sensing techniques to study monitoring, mapping, risk mitigation, risk vulnerability and early warning of natural hazards.
Geomatics, Natural Hazards and Risk covers the following topics:
- Remote sensing techniques
- Natural hazards associated with land, ocean, atmosphere, land-ocean-atmosphere coupling and climate change
- Emerging problems related to multi-hazard risk assessment, multi-vulnerability risk assessment, risk quantification and the economic aspects of hazards.
- Results of findings on major natural hazards