强拟线性抛物型系统

Farah Balaadich, E. Azroul
{"title":"强拟线性抛物型系统","authors":"Farah Balaadich, E. Azroul","doi":"10.24193/subbmath.2023.2.10","DOIUrl":null,"url":null,"abstract":"\"Using the theory of Young measures, we prove the existence of solutions to a strongly quasilinear parabolic system \\[\\frac{\\partial u}{\\partial t}+A(u)=f,\\] where $A(u)=-\\text{div}\\,\\sigma(x,t,u,Du)+\\sigma_0(x,t,u,Du)$, $\\sigma(x,t,u,Du)$ and $\\sigma_0(x,t,u,Du)$ are satisfy some conditions and $f\\in L^{p'}(0,T;W^{-1,p'}(\\Omega;\\R^m))$.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly quasilinear parabolic systems\",\"authors\":\"Farah Balaadich, E. Azroul\",\"doi\":\"10.24193/subbmath.2023.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"Using the theory of Young measures, we prove the existence of solutions to a strongly quasilinear parabolic system \\\\[\\\\frac{\\\\partial u}{\\\\partial t}+A(u)=f,\\\\] where $A(u)=-\\\\text{div}\\\\,\\\\sigma(x,t,u,Du)+\\\\sigma_0(x,t,u,Du)$, $\\\\sigma(x,t,u,Du)$ and $\\\\sigma_0(x,t,u,Du)$ are satisfy some conditions and $f\\\\in L^{p'}(0,T;W^{-1,p'}(\\\\Omega;\\\\R^m))$.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2023.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“利用杨测度理论,我们证明了强拟线性抛物系统\[\frac{\partial u}{\partial t}+A(u)=f,\]解的存在性,其中$A(u)=-\text{div}\,\sigma(x,t,u,Du)+\sigma_0(x,t,u,Du)$, $\sigma(x,t,u,Du)$和$\sigma_0(x,t,u,Du)$满足一定条件和$f\in L^{p'}(0,T;W^{-1,p'}(\Omega;\R^m))$。”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly quasilinear parabolic systems
"Using the theory of Young measures, we prove the existence of solutions to a strongly quasilinear parabolic system \[\frac{\partial u}{\partial t}+A(u)=f,\] where $A(u)=-\text{div}\,\sigma(x,t,u,Du)+\sigma_0(x,t,u,Du)$, $\sigma(x,t,u,Du)$ and $\sigma_0(x,t,u,Du)$ are satisfy some conditions and $f\in L^{p'}(0,T;W^{-1,p'}(\Omega;\R^m))$."
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
31 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信