普朗克长度尺度下高斯随机场的量子平均

A. Khrennikov
{"title":"普朗克长度尺度下高斯随机场的量子平均","authors":"A. Khrennikov","doi":"10.1117/12.801900","DOIUrl":null,"url":null,"abstract":"We show that the mathematical formalism of quantum mechanics can be interpreted as a method for approximation of classical (measure-theoretic) averages of functions f : L2(R3) → R. These are classical physical variables in our model with hidden variables - Prequantum Classical Statistical Field Theory (PCSFT). In this paper we provide a simple stochastic picture of such a quantum approximation procedure. In the probabilistic terms this is nothing else than the approximative method for computation of averages for functions of random variables. Since in PCSFT the space of hidden variables is L2(R3), the role of a classical random variable is played by a random field. In PCSFT we consider Gaussian random fields representing random fluctuations at the prequantum length scale. Quantum mechanical expression for the average (given by the von Neumann trace formula) is obtained through moving from the prequantum length scale to the quantum one (the scale at that we are able to perform measurements).","PeriodicalId":90714,"journal":{"name":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2008-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum averages from Gaussian random fields at the Planck length scale\",\"authors\":\"A. Khrennikov\",\"doi\":\"10.1117/12.801900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the mathematical formalism of quantum mechanics can be interpreted as a method for approximation of classical (measure-theoretic) averages of functions f : L2(R3) → R. These are classical physical variables in our model with hidden variables - Prequantum Classical Statistical Field Theory (PCSFT). In this paper we provide a simple stochastic picture of such a quantum approximation procedure. In the probabilistic terms this is nothing else than the approximative method for computation of averages for functions of random variables. Since in PCSFT the space of hidden variables is L2(R3), the role of a classical random variable is played by a random field. In PCSFT we consider Gaussian random fields representing random fluctuations at the prequantum length scale. Quantum mechanical expression for the average (given by the von Neumann trace formula) is obtained through moving from the prequantum length scale to the quantum one (the scale at that we are able to perform measurements).\",\"PeriodicalId\":90714,\"journal\":{\"name\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.801900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum bio-informatics V : proceedings of the quantum bio-informatics 2011, Tokyo University of Science, Japan, 7-12 March 2011. Quantum Bio-Informatics (Conference) (5th : 2011 : Tokyo, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.801900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了量子力学的数学形式可以被解释为函数f: L2(R3)→r的经典(测量理论)平均值的逼近方法。这些是我们的模型中的经典物理变量,具有隐变量-前量子经典统计场论(PCSFT)。在本文中,我们提供了这种量子近似过程的一个简单的随机图。在概率术语中,这只不过是计算随机变量函数平均值的近似方法。由于PCSFT中隐变量的空间是L2(R3),所以经典随机变量的作用由随机场来扮演。在PCSFT中,我们考虑高斯随机场表示前量子长度尺度上的随机波动。平均的量子力学表达式(由冯·诺伊曼轨迹公式给出)是通过从前量子长度尺度移动到量子长度尺度(我们能够进行测量的尺度)得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum averages from Gaussian random fields at the Planck length scale
We show that the mathematical formalism of quantum mechanics can be interpreted as a method for approximation of classical (measure-theoretic) averages of functions f : L2(R3) → R. These are classical physical variables in our model with hidden variables - Prequantum Classical Statistical Field Theory (PCSFT). In this paper we provide a simple stochastic picture of such a quantum approximation procedure. In the probabilistic terms this is nothing else than the approximative method for computation of averages for functions of random variables. Since in PCSFT the space of hidden variables is L2(R3), the role of a classical random variable is played by a random field. In PCSFT we consider Gaussian random fields representing random fluctuations at the prequantum length scale. Quantum mechanical expression for the average (given by the von Neumann trace formula) is obtained through moving from the prequantum length scale to the quantum one (the scale at that we are able to perform measurements).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信