低于一个能级交叉的分子预解离共振

Asymptot. Anal. Pub Date : 2017-07-25 DOI:10.3233/ASY-171453
Sohei Ashida
{"title":"低于一个能级交叉的分子预解离共振","authors":"Sohei Ashida","doi":"10.3233/ASY-171453","DOIUrl":null,"url":null,"abstract":"We study the resonances of $2\\times 2$ systems of one dimensional Schrodinger operators which are related to the mathematical theory of molecular predissociation. We determine the precise positions of the resonances with real parts below the energy where bonding and anti-bonding potentials intersect transversally. In particular, we find that imaginary parts (widths) of the resonances are exponentially small and that the indices are determined by Agmon distances for the minimum of two potentials.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"138 1","pages":"135-167"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Molecular predissociation resonances below an energy level crossing\",\"authors\":\"Sohei Ashida\",\"doi\":\"10.3233/ASY-171453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the resonances of $2\\\\times 2$ systems of one dimensional Schrodinger operators which are related to the mathematical theory of molecular predissociation. We determine the precise positions of the resonances with real parts below the energy where bonding and anti-bonding potentials intersect transversally. In particular, we find that imaginary parts (widths) of the resonances are exponentially small and that the indices are determined by Agmon distances for the minimum of two potentials.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"138 1\",\"pages\":\"135-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-171453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-171453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

研究了与分子预解数学理论有关的一维薛定谔算子$2\ × 2$系统的共振。我们确定了在成键和反键势横向相交的能量以下的实部共振的精确位置。特别地,我们发现共振的虚部(宽度)是指数小的,而且指数是由两个势的最小值的Agmon距离决定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular predissociation resonances below an energy level crossing
We study the resonances of $2\times 2$ systems of one dimensional Schrodinger operators which are related to the mathematical theory of molecular predissociation. We determine the precise positions of the resonances with real parts below the energy where bonding and anti-bonding potentials intersect transversally. In particular, we find that imaginary parts (widths) of the resonances are exponentially small and that the indices are determined by Agmon distances for the minimum of two potentials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信