图中的符号k无关性

L. Volkmann
{"title":"图中的符号k无关性","authors":"L. Volkmann","doi":"10.2478/s11533-013-0357-y","DOIUrl":null,"url":null,"abstract":"Let k ≥ 2 be an integer. A function f: V(G) → {−1, 1} defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k − 1. That is, Σx∈N[v]f(x) ≤ k − 1 for every v ∈ V(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σv∈V(G)f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence number αsk(G) of G.In this work, we mainly present upper bounds on αsk (G), as for example αsk(G) ≤ n − 2⌈(Δ(G) + 2 − k)/2⌉, and we prove the Nordhaus-Gaddum type inequality $$\\alpha _S^k \\left( G \\right) + \\alpha _S^k \\left( {\\bar G} \\right) \\leqslant n + 2k - 3$$, where n is the order, Δ(G) the maximum degree and $$\\bar G$$ the complement of the graph G. Some of our results imply well-known bounds on the signed 2-independence number.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"72 1","pages":"517-528"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Signed k-independence in graphs\",\"authors\":\"L. Volkmann\",\"doi\":\"10.2478/s11533-013-0357-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let k ≥ 2 be an integer. A function f: V(G) → {−1, 1} defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k − 1. That is, Σx∈N[v]f(x) ≤ k − 1 for every v ∈ V(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σv∈V(G)f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence number αsk(G) of G.In this work, we mainly present upper bounds on αsk (G), as for example αsk(G) ≤ n − 2⌈(Δ(G) + 2 − k)/2⌉, and we prove the Nordhaus-Gaddum type inequality $$\\\\alpha _S^k \\\\left( G \\\\right) + \\\\alpha _S^k \\\\left( {\\\\bar G} \\\\right) \\\\leqslant n + 2k - 3$$, where n is the order, Δ(G) the maximum degree and $$\\\\bar G$$ the complement of the graph G. Some of our results imply well-known bounds on the signed 2-independence number.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"72 1\",\"pages\":\"517-528\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-013-0357-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0357-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设k≥2为整数。在图G的顶点集V(G)上定义的函数f: V(G)→{−1,1}是一个有符号k无关函数,如果它在任何闭邻域上的函数值的和不大于k−1。即对于每个v∈v (G), Σx∈N[v]f(x)≤k−1,其中N[v]由v和v的每个相邻顶点组成,有符号k无关函数f的权值为w(f) = Σv∈v (G)f(v)。在本文中,我们主要给出了αsk(G)的上界,例如αsk(G)≤n−2≤(Δ(G) + 2−k)/2,并证明了Nordhaus-Gaddum型不等式$$\alpha _S^k \left( G \right) + \alpha _S^k \left( {\bar G} \right) \leqslant n + 2k - 3$$,其中n为阶,Δ(G)为最大度,$$\bar G$$为图G的补。我们的一些结果暗示了符号2无关数的已知界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signed k-independence in graphs
Let k ≥ 2 be an integer. A function f: V(G) → {−1, 1} defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k − 1. That is, Σx∈N[v]f(x) ≤ k − 1 for every v ∈ V(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σv∈V(G)f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence number αsk(G) of G.In this work, we mainly present upper bounds on αsk (G), as for example αsk(G) ≤ n − 2⌈(Δ(G) + 2 − k)/2⌉, and we prove the Nordhaus-Gaddum type inequality $$\alpha _S^k \left( G \right) + \alpha _S^k \left( {\bar G} \right) \leqslant n + 2k - 3$$, where n is the order, Δ(G) the maximum degree and $$\bar G$$ the complement of the graph G. Some of our results imply well-known bounds on the signed 2-independence number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信