{"title":"最大化Edelman-Greene统计量","authors":"Gidon Orelowitz","doi":"10.4310/joc.2023.v14.n2.a1","DOIUrl":null,"url":null,"abstract":"The $\\textit{Edelman-Greene statistic}$ of S. Billey-B. Pawlowski measures the \"shortness\" of the Schur expansion of a Stanley symmetric function. We show that the maximum value of this statistic on permutations of Coxeter length $n$ is the number of involutions in the symmetric group $S_n$, and explicitly describe the permutations that attain this maximum. Our proof confirms a recent conjecture of C. Monical, B. Pankow, and A. Yong: we give an explicit combinatorial injection between a certain collections of Edelman-Greene tableaux and standard Young tableaux.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"71 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing the Edelman–Greene statistic\",\"authors\":\"Gidon Orelowitz\",\"doi\":\"10.4310/joc.2023.v14.n2.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The $\\\\textit{Edelman-Greene statistic}$ of S. Billey-B. Pawlowski measures the \\\"shortness\\\" of the Schur expansion of a Stanley symmetric function. We show that the maximum value of this statistic on permutations of Coxeter length $n$ is the number of involutions in the symmetric group $S_n$, and explicitly describe the permutations that attain this maximum. Our proof confirms a recent conjecture of C. Monical, B. Pankow, and A. Yong: we give an explicit combinatorial injection between a certain collections of Edelman-Greene tableaux and standard Young tableaux.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2023.v14.n2.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2023.v14.n2.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
S. billey的$\textit{Edelman-Greene statistic}$。Pawlowski测量了Stanley对称函数的Schur展开的“短度”。我们证明了这个统计量在cox长度$n$的排列上的最大值是对称群$S_n$中的对合数,并明确地描述了达到这个最大值的排列。我们的证明证实了C. Monical, B. Pankow和a . Yong最近的一个猜想:我们在Edelman-Greene的某些集合和标准Young的集合之间给出了一个明确的组合注入。
The $\textit{Edelman-Greene statistic}$ of S. Billey-B. Pawlowski measures the "shortness" of the Schur expansion of a Stanley symmetric function. We show that the maximum value of this statistic on permutations of Coxeter length $n$ is the number of involutions in the symmetric group $S_n$, and explicitly describe the permutations that attain this maximum. Our proof confirms a recent conjecture of C. Monical, B. Pankow, and A. Yong: we give an explicit combinatorial injection between a certain collections of Edelman-Greene tableaux and standard Young tableaux.