{"title":"RWRM:残差Wasserstein正则化模型用于图像恢复","authors":"Ruiqiang He, Xiangchu Feng, Xiaolong Zhu, Hua Huang, Bingzhe Wei","doi":"10.3934/ipi.2020069","DOIUrl":null,"url":null,"abstract":"Existing image restoration methods mostly make full use of various image prior information. However, they rarely exploit the potential of residual histograms, especially their role as ensemble regularization constraint. In this paper, we propose a residual Wasserstein regularization model (RWRM), in which a residual histogram constraint is subtly embedded into a type of variational minimization problems. Specifically, utilizing the Wasserstein distance from the optimal transport theory, this scheme is achieved by enforcing the observed image residual histogram as close as possible to the reference residual histogram. Furthermore, the RWRM unifies the residual Wasserstein regularization and image prior regularization to improve image restoration performance. The robustness of parameter selection in the RWRM makes the proposed algorithms easier to implement. Finally, extensive experiments have confirmed that our RWRM applied to Gaussian denoising and non-blind deconvolution is effective.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"81 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RWRM: Residual Wasserstein regularization model for image restoration\",\"authors\":\"Ruiqiang He, Xiangchu Feng, Xiaolong Zhu, Hua Huang, Bingzhe Wei\",\"doi\":\"10.3934/ipi.2020069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing image restoration methods mostly make full use of various image prior information. However, they rarely exploit the potential of residual histograms, especially their role as ensemble regularization constraint. In this paper, we propose a residual Wasserstein regularization model (RWRM), in which a residual histogram constraint is subtly embedded into a type of variational minimization problems. Specifically, utilizing the Wasserstein distance from the optimal transport theory, this scheme is achieved by enforcing the observed image residual histogram as close as possible to the reference residual histogram. Furthermore, the RWRM unifies the residual Wasserstein regularization and image prior regularization to improve image restoration performance. The robustness of parameter selection in the RWRM makes the proposed algorithms easier to implement. Finally, extensive experiments have confirmed that our RWRM applied to Gaussian denoising and non-blind deconvolution is effective.\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2020069\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2020069","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
RWRM: Residual Wasserstein regularization model for image restoration
Existing image restoration methods mostly make full use of various image prior information. However, they rarely exploit the potential of residual histograms, especially their role as ensemble regularization constraint. In this paper, we propose a residual Wasserstein regularization model (RWRM), in which a residual histogram constraint is subtly embedded into a type of variational minimization problems. Specifically, utilizing the Wasserstein distance from the optimal transport theory, this scheme is achieved by enforcing the observed image residual histogram as close as possible to the reference residual histogram. Furthermore, the RWRM unifies the residual Wasserstein regularization and image prior regularization to improve image restoration performance. The robustness of parameter selection in the RWRM makes the proposed algorithms easier to implement. Finally, extensive experiments have confirmed that our RWRM applied to Gaussian denoising and non-blind deconvolution is effective.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.