{"title":"不确定环境下模糊多目标总体生产计划问题的具有β偏度的综合可能性线性规划","authors":"Noppasorn Sutthibutr, N. Chiadamrong","doi":"10.1080/16168658.2021.1893493","DOIUrl":null,"url":null,"abstract":"This study proposes an improved Fuzzy Programming (FP) approach to optimise multi-objective Aggregate Production Planning (APP) problem under uncertain environments. The proposed approach integrates the concept of Possibilistic Linear Programming (PLP) with Beta-Skewness Degree that decision-makers can manipulate the best level of data fuzziness as well as maintain such fuzziness in the optimisation process (by not turning it to deterministic data too early). The effectiveness of the proposed approach is demonstrated through a case study by minimising the highest overall deviation from the ideal solution of total costs under imprecise operating costs, customer demand, labour level, and machine capacity. Our comparative result clearly shows that the obtained solution outperforms the solutions from traditional defuzzification methods. The proposed approach also helps decision-makers not only to know and optimise the most likely situation, but also realise the outcomes in the optimistic and the pessimistic business situations so that decision makers can prepare and take necessary actions for future uncertainty.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"60 1","pages":"355 - 380"},"PeriodicalIF":1.3000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Integrated Possibilistic Linear Programming with Beta-Skewness Degree for a Fuzzy Multi-Objective Aggregate Production Planning Problem Under Uncertain Environments\",\"authors\":\"Noppasorn Sutthibutr, N. Chiadamrong\",\"doi\":\"10.1080/16168658.2021.1893493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes an improved Fuzzy Programming (FP) approach to optimise multi-objective Aggregate Production Planning (APP) problem under uncertain environments. The proposed approach integrates the concept of Possibilistic Linear Programming (PLP) with Beta-Skewness Degree that decision-makers can manipulate the best level of data fuzziness as well as maintain such fuzziness in the optimisation process (by not turning it to deterministic data too early). The effectiveness of the proposed approach is demonstrated through a case study by minimising the highest overall deviation from the ideal solution of total costs under imprecise operating costs, customer demand, labour level, and machine capacity. Our comparative result clearly shows that the obtained solution outperforms the solutions from traditional defuzzification methods. The proposed approach also helps decision-makers not only to know and optimise the most likely situation, but also realise the outcomes in the optimistic and the pessimistic business situations so that decision makers can prepare and take necessary actions for future uncertainty.\",\"PeriodicalId\":37623,\"journal\":{\"name\":\"Fuzzy Information and Engineering\",\"volume\":\"60 1\",\"pages\":\"355 - 380\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Information and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16168658.2021.1893493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2021.1893493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Integrated Possibilistic Linear Programming with Beta-Skewness Degree for a Fuzzy Multi-Objective Aggregate Production Planning Problem Under Uncertain Environments
This study proposes an improved Fuzzy Programming (FP) approach to optimise multi-objective Aggregate Production Planning (APP) problem under uncertain environments. The proposed approach integrates the concept of Possibilistic Linear Programming (PLP) with Beta-Skewness Degree that decision-makers can manipulate the best level of data fuzziness as well as maintain such fuzziness in the optimisation process (by not turning it to deterministic data too early). The effectiveness of the proposed approach is demonstrated through a case study by minimising the highest overall deviation from the ideal solution of total costs under imprecise operating costs, customer demand, labour level, and machine capacity. Our comparative result clearly shows that the obtained solution outperforms the solutions from traditional defuzzification methods. The proposed approach also helps decision-makers not only to know and optimise the most likely situation, but also realise the outcomes in the optimistic and the pessimistic business situations so that decision makers can prepare and take necessary actions for future uncertainty.
期刊介绍:
Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]