从多电子理论看固体氢分子的结构和电子性质

Ke Liao, Tong Shen, Xin-Zheng Li, A. Alavi, A. Grüneis
{"title":"从多电子理论看固体氢分子的结构和电子性质","authors":"Ke Liao, Tong Shen, Xin-Zheng Li, A. Alavi, A. Grüneis","doi":"10.1103/PHYSREVB.103.054111","DOIUrl":null,"url":null,"abstract":"We study the structural and electronic properties of phase III of solid hydrogen using accurate many-electron theories and compare to state-of-the-art experimental findings. The atomic structures of phase III modelled by C2/c-24 crystals are fully optimized on the level of second-order perturbation theory, demonstrating that previously employed structures optimized on the level of approximate density functionals exhibit errors in the H$_2$ bond lengths that cause significant discrepancies in the computed quasi particle band gaps and vibrational frequencies compared to experiment. Using the newly optimized atomic structures, we study the band gap closure and change in vibrational frequencies as a function of pressure. Our findings are in good agreement with recent experimental observations and may prove useful in resolving long-standing discrepancies between experimental estimates of metallization pressures possibly caused by disagreeing pressure calibrations.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural and electronic properties of solid molecular hydrogen from many-electron theories\",\"authors\":\"Ke Liao, Tong Shen, Xin-Zheng Li, A. Alavi, A. Grüneis\",\"doi\":\"10.1103/PHYSREVB.103.054111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the structural and electronic properties of phase III of solid hydrogen using accurate many-electron theories and compare to state-of-the-art experimental findings. The atomic structures of phase III modelled by C2/c-24 crystals are fully optimized on the level of second-order perturbation theory, demonstrating that previously employed structures optimized on the level of approximate density functionals exhibit errors in the H$_2$ bond lengths that cause significant discrepancies in the computed quasi particle band gaps and vibrational frequencies compared to experiment. Using the newly optimized atomic structures, we study the band gap closure and change in vibrational frequencies as a function of pressure. Our findings are in good agreement with recent experimental observations and may prove useful in resolving long-standing discrepancies between experimental estimates of metallization pressures possibly caused by disagreeing pressure calibrations.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVB.103.054111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVB.103.054111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们利用精确的多电子理论研究了固体氢第三相的结构和电子性质,并与最新的实验结果进行了比较。用C2/c-24晶体模拟的III相原子结构在二阶微扰理论水平上进行了充分优化,表明先前采用的在近似密度泛函水平上优化的结构在H$_2$键长上存在误差,导致计算出的准粒子带隙和振动频率与实验结果存在显著差异。利用新优化的原子结构,我们研究了带隙闭合和振动频率随压力的变化。我们的发现与最近的实验观察结果很好地一致,并且可能证明有助于解决长期存在的金属化压力实验估计之间的差异,这可能是由于压力校准不一致造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural and electronic properties of solid molecular hydrogen from many-electron theories
We study the structural and electronic properties of phase III of solid hydrogen using accurate many-electron theories and compare to state-of-the-art experimental findings. The atomic structures of phase III modelled by C2/c-24 crystals are fully optimized on the level of second-order perturbation theory, demonstrating that previously employed structures optimized on the level of approximate density functionals exhibit errors in the H$_2$ bond lengths that cause significant discrepancies in the computed quasi particle band gaps and vibrational frequencies compared to experiment. Using the newly optimized atomic structures, we study the band gap closure and change in vibrational frequencies as a function of pressure. Our findings are in good agreement with recent experimental observations and may prove useful in resolving long-standing discrepancies between experimental estimates of metallization pressures possibly caused by disagreeing pressure calibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信