关于Hironaka商的增长行为

IF 0.4 Q4 MATHEMATICS
H. Maugendre, F. Michel
{"title":"关于Hironaka商的增长行为","authors":"H. Maugendre, F. Michel","doi":"10.5427/jsing.2020.20b","DOIUrl":null,"url":null,"abstract":"We consider a finite analytic morphism $\\phi = (f,g) : (X,p)\\to (\\C^2,0)$ where $(X,p)$ is a complex analytic normal surface germ and $f$ and $g$ are complex analytic function germs. Let $\\pi : (Y,E_{Y})\\to (X,p)$ be a good resolution of $\\phi$ with exceptional divisor $E_{Y}=\\pi ^{-1}(p)$. We denote $G(Y)$ the dual graph of the resolution $\\pi $. We study the behaviour of the Hironaka quotients of $(f,g)$ associated to the vertices of $G(Y)$. We show that there exists maximal oriented arcs in $G(Y)$ along which the Hironaka quotients of $(f,g)$ strictly increase and they are constant on the connected components of the closure of the complement of the union of the maximal oriented arcs.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2017-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the growth behaviour of Hironaka quotients\",\"authors\":\"H. Maugendre, F. Michel\",\"doi\":\"10.5427/jsing.2020.20b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a finite analytic morphism $\\\\phi = (f,g) : (X,p)\\\\to (\\\\C^2,0)$ where $(X,p)$ is a complex analytic normal surface germ and $f$ and $g$ are complex analytic function germs. Let $\\\\pi : (Y,E_{Y})\\\\to (X,p)$ be a good resolution of $\\\\phi$ with exceptional divisor $E_{Y}=\\\\pi ^{-1}(p)$. We denote $G(Y)$ the dual graph of the resolution $\\\\pi $. We study the behaviour of the Hironaka quotients of $(f,g)$ associated to the vertices of $G(Y)$. We show that there exists maximal oriented arcs in $G(Y)$ along which the Hironaka quotients of $(f,g)$ strictly increase and they are constant on the connected components of the closure of the complement of the union of the maximal oriented arcs.\",\"PeriodicalId\":44411,\"journal\":{\"name\":\"Journal of Singularities\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Singularities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5427/jsing.2020.20b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2020.20b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

考虑一个有限解析态射$\phi = (f,g) : (X,p)\to (\C^2,0)$,其中$(X,p)$是复解析法曲面胚芽,$f$和$g$是复解析函数胚芽。设$\pi : (Y,E_{Y})\to (X,p)$为具有例外除数$E_{Y}=\pi ^{-1}(p)$的良好分辨率$\phi$。我们将分辨率$\pi $的对偶图表示为$G(Y)$。我们研究了$(f,g)$与$G(Y)$顶点相关的Hironaka商的行为。我们证明了$G(Y)$中存在极大定向弧,$(f,g)$的Hironaka商沿此极大定向弧严格增大,并且在极大定向弧并补闭的连通分量上是常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the growth behaviour of Hironaka quotients
We consider a finite analytic morphism $\phi = (f,g) : (X,p)\to (\C^2,0)$ where $(X,p)$ is a complex analytic normal surface germ and $f$ and $g$ are complex analytic function germs. Let $\pi : (Y,E_{Y})\to (X,p)$ be a good resolution of $\phi$ with exceptional divisor $E_{Y}=\pi ^{-1}(p)$. We denote $G(Y)$ the dual graph of the resolution $\pi $. We study the behaviour of the Hironaka quotients of $(f,g)$ associated to the vertices of $G(Y)$. We show that there exists maximal oriented arcs in $G(Y)$ along which the Hironaka quotients of $(f,g)$ strictly increase and they are constant on the connected components of the closure of the complement of the union of the maximal oriented arcs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信