K{2,2}相对于K{6,6}的m-二分拉姆齐数

IF 0.4 4区 数学 Q4 MATHEMATICS
Yaser Rowshan
{"title":"K{2,2}相对于K{6,6}的m-二分拉姆齐数","authors":"Yaser Rowshan","doi":"10.47443/cm.2022.011","DOIUrl":null,"url":null,"abstract":"For the given bipartite graphs G 1 , . . . , G n , the bipartite Ramsey number BR ( G 1 , . . . , G n ) is the least positive integer b such that any complete bipartite graph K b,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . For the given bipartite graphs G 1 , . . . , G n and a positive integer m , the m -bipartite Ramsey number BR m ( G 1 , . . . , G n ) is defined as the least positive integer b ( b ≥ m ) such that any complete bipartite graph K m,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . The values of BR m ( G 1 , G 2 ) (for each m ), BR m ( K 3 , 3 , K 3 , 3 ) and BR m ( K 2 , 2 , K 5 , 5 ) (for particular values of m ) have already been determined in several articles, where G 1 = K 2 , 2 and G 2 ∈ { K 3 , 3 , K 4 , 4 } . In this article, the value of BR m ( K 2 , 2 , K 6 , 6 ) is computed for each m ∈ { 2 , 3 , . . . , 8 } .","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":"38 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The m-Bipartite Ramsey Number of the K{2,2} Versus K{6,6}\",\"authors\":\"Yaser Rowshan\",\"doi\":\"10.47443/cm.2022.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the given bipartite graphs G 1 , . . . , G n , the bipartite Ramsey number BR ( G 1 , . . . , G n ) is the least positive integer b such that any complete bipartite graph K b,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . For the given bipartite graphs G 1 , . . . , G n and a positive integer m , the m -bipartite Ramsey number BR m ( G 1 , . . . , G n ) is defined as the least positive integer b ( b ≥ m ) such that any complete bipartite graph K m,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . The values of BR m ( G 1 , G 2 ) (for each m ), BR m ( K 3 , 3 , K 3 , 3 ) and BR m ( K 2 , 2 , K 5 , 5 ) (for particular values of m ) have already been determined in several articles, where G 1 = K 2 , 2 and G 2 ∈ { K 3 , 3 , K 4 , 4 } . In this article, the value of BR m ( K 2 , 2 , K 6 , 6 ) is computed for each m ∈ { 2 , 3 , . . . , 8 } .\",\"PeriodicalId\":48938,\"journal\":{\"name\":\"Contributions To Discrete Mathematics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions To Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47443/cm.2022.011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2022.011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于给定的二部图g1,…, G n,二部拉姆齐数BR (g1),…, G n)是最小的正整数b,使得任何完全二部图K b,b的边有1,2,…, n,包含一个G i(1≤i≤n)的副本,其中G i的所有边的颜色都是i。对于给定的二部图g1,…, G n和正整数m, m -二部拉姆齐数BR m (g1,…), G n)被定义为最小正整数b (b≥m),使得任何完全二部图K m,b的边有1,2,…, n,包含一个G i(1≤i≤n)的副本,其中G i的所有边的颜色都是i。BR m (g1, g2)(对于每个m), BR m (k3,3, k3,3)和BR m (k2,2, k5,5)(对于m的特定值)的值已经在几篇文章中确定,其中g1 = k2,2并且g2∈{k3,3, k4,4}。在本文中,对于每个m∈{2,3,…,计算BR m (k2,2, k6,6)的值。, 8}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The m-Bipartite Ramsey Number of the K{2,2} Versus K{6,6}
For the given bipartite graphs G 1 , . . . , G n , the bipartite Ramsey number BR ( G 1 , . . . , G n ) is the least positive integer b such that any complete bipartite graph K b,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . For the given bipartite graphs G 1 , . . . , G n and a positive integer m , the m -bipartite Ramsey number BR m ( G 1 , . . . , G n ) is defined as the least positive integer b ( b ≥ m ) such that any complete bipartite graph K m,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . The values of BR m ( G 1 , G 2 ) (for each m ), BR m ( K 3 , 3 , K 3 , 3 ) and BR m ( K 2 , 2 , K 5 , 5 ) (for particular values of m ) have already been determined in several articles, where G 1 = K 2 , 2 and G 2 ∈ { K 3 , 3 , K 4 , 4 } . In this article, the value of BR m ( K 2 , 2 , K 6 , 6 ) is computed for each m ∈ { 2 , 3 , . . . , 8 } .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信