{"title":"K{2,2}相对于K{6,6}的m-二分拉姆齐数","authors":"Yaser Rowshan","doi":"10.47443/cm.2022.011","DOIUrl":null,"url":null,"abstract":"For the given bipartite graphs G 1 , . . . , G n , the bipartite Ramsey number BR ( G 1 , . . . , G n ) is the least positive integer b such that any complete bipartite graph K b,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . For the given bipartite graphs G 1 , . . . , G n and a positive integer m , the m -bipartite Ramsey number BR m ( G 1 , . . . , G n ) is defined as the least positive integer b ( b ≥ m ) such that any complete bipartite graph K m,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . The values of BR m ( G 1 , G 2 ) (for each m ), BR m ( K 3 , 3 , K 3 , 3 ) and BR m ( K 2 , 2 , K 5 , 5 ) (for particular values of m ) have already been determined in several articles, where G 1 = K 2 , 2 and G 2 ∈ { K 3 , 3 , K 4 , 4 } . In this article, the value of BR m ( K 2 , 2 , K 6 , 6 ) is computed for each m ∈ { 2 , 3 , . . . , 8 } .","PeriodicalId":48938,"journal":{"name":"Contributions To Discrete Mathematics","volume":"38 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The m-Bipartite Ramsey Number of the K{2,2} Versus K{6,6}\",\"authors\":\"Yaser Rowshan\",\"doi\":\"10.47443/cm.2022.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the given bipartite graphs G 1 , . . . , G n , the bipartite Ramsey number BR ( G 1 , . . . , G n ) is the least positive integer b such that any complete bipartite graph K b,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . For the given bipartite graphs G 1 , . . . , G n and a positive integer m , the m -bipartite Ramsey number BR m ( G 1 , . . . , G n ) is defined as the least positive integer b ( b ≥ m ) such that any complete bipartite graph K m,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . The values of BR m ( G 1 , G 2 ) (for each m ), BR m ( K 3 , 3 , K 3 , 3 ) and BR m ( K 2 , 2 , K 5 , 5 ) (for particular values of m ) have already been determined in several articles, where G 1 = K 2 , 2 and G 2 ∈ { K 3 , 3 , K 4 , 4 } . In this article, the value of BR m ( K 2 , 2 , K 6 , 6 ) is computed for each m ∈ { 2 , 3 , . . . , 8 } .\",\"PeriodicalId\":48938,\"journal\":{\"name\":\"Contributions To Discrete Mathematics\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions To Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.47443/cm.2022.011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions To Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.47443/cm.2022.011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
对于给定的二部图g1,…, G n,二部拉姆齐数BR (g1),…, G n)是最小的正整数b,使得任何完全二部图K b,b的边有1,2,…, n,包含一个G i(1≤i≤n)的副本,其中G i的所有边的颜色都是i。对于给定的二部图g1,…, G n和正整数m, m -二部拉姆齐数BR m (g1,…), G n)被定义为最小正整数b (b≥m),使得任何完全二部图K m,b的边有1,2,…, n,包含一个G i(1≤i≤n)的副本,其中G i的所有边的颜色都是i。BR m (g1, g2)(对于每个m), BR m (k3,3, k3,3)和BR m (k2,2, k5,5)(对于m的特定值)的值已经在几篇文章中确定,其中g1 = k2,2并且g2∈{k3,3, k4,4}。在本文中,对于每个m∈{2,3,…,计算BR m (k2,2, k6,6)的值。, 8}。
The m-Bipartite Ramsey Number of the K{2,2} Versus K{6,6}
For the given bipartite graphs G 1 , . . . , G n , the bipartite Ramsey number BR ( G 1 , . . . , G n ) is the least positive integer b such that any complete bipartite graph K b,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . For the given bipartite graphs G 1 , . . . , G n and a positive integer m , the m -bipartite Ramsey number BR m ( G 1 , . . . , G n ) is defined as the least positive integer b ( b ≥ m ) such that any complete bipartite graph K m,b having edges coloured with 1 , 2 , . . . , n , contains a copy of some G i ( 1 ≤ i ≤ n ), where all the edges of G i have colour i . The values of BR m ( G 1 , G 2 ) (for each m ), BR m ( K 3 , 3 , K 3 , 3 ) and BR m ( K 2 , 2 , K 5 , 5 ) (for particular values of m ) have already been determined in several articles, where G 1 = K 2 , 2 and G 2 ∈ { K 3 , 3 , K 4 , 4 } . In this article, the value of BR m ( K 2 , 2 , K 6 , 6 ) is computed for each m ∈ { 2 , 3 , . . . , 8 } .
期刊介绍:
Contributions to Discrete Mathematics (ISSN 1715-0868) is a refereed e-journal dedicated to publishing significant results in a number of areas of pure and applied mathematics. Based at the University of Calgary, Canada, CDM is free for both readers and authors, edited and published online and will be mirrored at the European Mathematical Information Service and the National Library of Canada.