{"title":"基准相对损失和投资组合保险下的投资组合表现:从欧米伽比率到损失厌恶","authors":"Tak Wa Ng, Thai Q. Nguyen","doi":"10.1017/asb.2022.26","DOIUrl":null,"url":null,"abstract":"Abstract We study an optimal investment problem under a joint limited expected relative loss and portfolio insurance constraint with a general random benchmark. By making use of a static Lagrangian method in a complete market setting, the optimal wealth and investment strategy can be fully determined along with the existence and uniqueness of the Lagrangian multipliers. Our numerical demonstration for various commonly used random benchmarks shows a trade-off between the portfolio outperformance and underperformance relative to the benchmark, which may not be captured by the widely used Omega ratio and its utility-transformed version, reflecting the impact of the benchmarking loss constraint. Furthermore, we develop a new portfolio performance measurement indicator that incorporates the agent’s utility loss aversion relative to the benchmark via solving an equivalent optimal asset allocation problem with a benchmark-reference-based preference. We show that the expected utility performance is well depicted by looking at this new portfolio performance ratio, suggesting a more suitable portfolio performance measurement under a limited loss constraint relative to a possibly random benchmark.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"23 1","pages":"149 - 183"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Portfolio performance under benchmarking relative loss and portfolio insurance: From omega ratio to loss aversion\",\"authors\":\"Tak Wa Ng, Thai Q. Nguyen\",\"doi\":\"10.1017/asb.2022.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study an optimal investment problem under a joint limited expected relative loss and portfolio insurance constraint with a general random benchmark. By making use of a static Lagrangian method in a complete market setting, the optimal wealth and investment strategy can be fully determined along with the existence and uniqueness of the Lagrangian multipliers. Our numerical demonstration for various commonly used random benchmarks shows a trade-off between the portfolio outperformance and underperformance relative to the benchmark, which may not be captured by the widely used Omega ratio and its utility-transformed version, reflecting the impact of the benchmarking loss constraint. Furthermore, we develop a new portfolio performance measurement indicator that incorporates the agent’s utility loss aversion relative to the benchmark via solving an equivalent optimal asset allocation problem with a benchmark-reference-based preference. We show that the expected utility performance is well depicted by looking at this new portfolio performance ratio, suggesting a more suitable portfolio performance measurement under a limited loss constraint relative to a possibly random benchmark.\",\"PeriodicalId\":8617,\"journal\":{\"name\":\"ASTIN Bulletin\",\"volume\":\"23 1\",\"pages\":\"149 - 183\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2022.26\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2022.26","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Portfolio performance under benchmarking relative loss and portfolio insurance: From omega ratio to loss aversion
Abstract We study an optimal investment problem under a joint limited expected relative loss and portfolio insurance constraint with a general random benchmark. By making use of a static Lagrangian method in a complete market setting, the optimal wealth and investment strategy can be fully determined along with the existence and uniqueness of the Lagrangian multipliers. Our numerical demonstration for various commonly used random benchmarks shows a trade-off between the portfolio outperformance and underperformance relative to the benchmark, which may not be captured by the widely used Omega ratio and its utility-transformed version, reflecting the impact of the benchmarking loss constraint. Furthermore, we develop a new portfolio performance measurement indicator that incorporates the agent’s utility loss aversion relative to the benchmark via solving an equivalent optimal asset allocation problem with a benchmark-reference-based preference. We show that the expected utility performance is well depicted by looking at this new portfolio performance ratio, suggesting a more suitable portfolio performance measurement under a limited loss constraint relative to a possibly random benchmark.
期刊介绍:
ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.