基于反向框架的一步聚类检测历史小提琴的变化

Alireza Rezaei, S. L. Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, M. Malagodi
{"title":"基于反向框架的一步聚类检测历史小提琴的变化","authors":"Alireza Rezaei, S. L. Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, M. Malagodi","doi":"10.1109/ICPR48806.2021.9412129","DOIUrl":null,"url":null,"abstract":"Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of necessary interventions. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn-out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the “Violins UVIFL imagery” dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with state-of-the-art clustering methods show improved overall precision and recall.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"69 1","pages":"9348-9355"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"One step clustering based on a-contrario framework for detection of alterations in historical violins\",\"authors\":\"Alireza Rezaei, S. L. Hégarat-Mascle, Emanuel Aldea, Piercarlo Dondi, M. Malagodi\",\"doi\":\"10.1109/ICPR48806.2021.9412129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of necessary interventions. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn-out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the “Violins UVIFL imagery” dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with state-of-the-art clustering methods show improved overall precision and recall.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"69 1\",\"pages\":\"9348-9355\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9412129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

预防性保护是文化遗产保护的重要实践。对艺术品保存状况的持续监测有助于我们减少损坏的风险和必要干预的数量。在这项工作中,我们提出了一种基于反向框架的概率方法来检测历史小提琴表面的变化。我们的方法是在一个背景模型中考虑灰度和空间密度信息的一步NFA聚类解决方案。该方法对噪声具有较强的鲁棒性,避免了参数调整和对磨损区域数量的任何假设。我们使用了作为输入的紫外线诱导荧光(UVIFL)图像来考虑可见光无法感知的细节。对“小提琴UVIFL图像”数据集中包含的图像序列进行了测试。结果表明,该算法能够将磨损区域与周围区域区分开来。与最先进的聚类方法的比较显示出总体精度和召回率的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
One step clustering based on a-contrario framework for detection of alterations in historical violins
Preventive conservation is an important practice in Cultural Heritage. The constant monitoring of the state of conservation of an artwork helps us reduce the risk of damage and number of necessary interventions. In this work, we propose a probabilistic approach for the detection of alterations on the surface of historical violins based on an a-contrario framework. Our method is a one step NFA clustering solution which considers grey-level and spatial density information in one background model. The proposed method is robust to noise and avoids parameter tuning and any assumption about the quantity of the worn-out areas. We have used as input UV induced fluorescence (UVIFL) images for considering details not perceivable with visible light. Tests were conducted on image sequences included in the “Violins UVIFL imagery” dataset. Results illustrate the ability of the algorithm to distinguish the worn area from the surrounding regions. Comparisons with state-of-the-art clustering methods show improved overall precision and recall.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信