{"title":"总结了管内紊流和层流速度的计算公式","authors":"L. Melamed, G. Filippov","doi":"10.30724/1998-9903-2018-20-7-8-136-146","DOIUrl":null,"url":null,"abstract":"On the basis of the solution of the equation of the movement (in conception of «vortex backfill”) offered earlier, the generalized formula for a profile of speed of a turbulent and laminar current in pipes is received. The formula has binomial power shape. The received solution allows to consider speed of a turbulent kernel of a stream, or, more precisely, averaged on time value of axial component of this speed, as the sum of three items - carrying, parabolic and power but not parabolic. It is shown that the profile of turbulent speed of the basic part of a stream is described by the parabolic component. Transformation of the equation of movement in which solutions both laminar, and turbulent profiles of speeds (in the basic part of a stream) are direct lines (or very close to them) is offered. Some features of turbulent flow, similar to currents in a granular layer are noted.","PeriodicalId":33495,"journal":{"name":"Izvestiia vysshikh uchebnykh zavedenii Problemy energetiki","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"THE SUMMARIZED FORMULA FOR VELOCITY OF TURBULENT AND LAMINAR FLOWS IN PIPES\",\"authors\":\"L. Melamed, G. Filippov\",\"doi\":\"10.30724/1998-9903-2018-20-7-8-136-146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the basis of the solution of the equation of the movement (in conception of «vortex backfill”) offered earlier, the generalized formula for a profile of speed of a turbulent and laminar current in pipes is received. The formula has binomial power shape. The received solution allows to consider speed of a turbulent kernel of a stream, or, more precisely, averaged on time value of axial component of this speed, as the sum of three items - carrying, parabolic and power but not parabolic. It is shown that the profile of turbulent speed of the basic part of a stream is described by the parabolic component. Transformation of the equation of movement in which solutions both laminar, and turbulent profiles of speeds (in the basic part of a stream) are direct lines (or very close to them) is offered. Some features of turbulent flow, similar to currents in a granular layer are noted.\",\"PeriodicalId\":33495,\"journal\":{\"name\":\"Izvestiia vysshikh uchebnykh zavedenii Problemy energetiki\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiia vysshikh uchebnykh zavedenii Problemy energetiki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30724/1998-9903-2018-20-7-8-136-146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiia vysshikh uchebnykh zavedenii Problemy energetiki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30724/1998-9903-2018-20-7-8-136-146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THE SUMMARIZED FORMULA FOR VELOCITY OF TURBULENT AND LAMINAR FLOWS IN PIPES
On the basis of the solution of the equation of the movement (in conception of «vortex backfill”) offered earlier, the generalized formula for a profile of speed of a turbulent and laminar current in pipes is received. The formula has binomial power shape. The received solution allows to consider speed of a turbulent kernel of a stream, or, more precisely, averaged on time value of axial component of this speed, as the sum of three items - carrying, parabolic and power but not parabolic. It is shown that the profile of turbulent speed of the basic part of a stream is described by the parabolic component. Transformation of the equation of movement in which solutions both laminar, and turbulent profiles of speeds (in the basic part of a stream) are direct lines (or very close to them) is offered. Some features of turbulent flow, similar to currents in a granular layer are noted.