A. Mironov, Sehyun Park, T. Reboli, Jinhong Kim, D. Sievers, Sung-Jin Park, J. Eden
{"title":"应用于光学和微流体的172纳米光烧蚀聚合物的环保3D微加工","authors":"A. Mironov, Sehyun Park, T. Reboli, Jinhong Kim, D. Sievers, Sung-Jin Park, J. Eden","doi":"10.1117/12.2594868","DOIUrl":null,"url":null,"abstract":"We report a novel, environmentally-friendly, scalable subtractive process which allows for complex 3D optical, microfluidic and biomedical components and microstructures to be fabricated precisely in a wide variety of polymers. \nThe reported technique is capable of producing submicron structures with 20 µm depth in biodegradable polymers. The process is based on a VUV (λ=172 nm) photoablative lithographic technique utilizing flat microplasma lamps and does not require a clean room environment or any chemical processing. The fabricated 3D surface may also be used as a mold for PDMS curing.","PeriodicalId":23471,"journal":{"name":"UV and Higher Energy Photonics: From Materials to Applications 2021","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly 3D micromachining of polymers by 172 nm photoablation for optical and microfluidics applications\",\"authors\":\"A. Mironov, Sehyun Park, T. Reboli, Jinhong Kim, D. Sievers, Sung-Jin Park, J. Eden\",\"doi\":\"10.1117/12.2594868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a novel, environmentally-friendly, scalable subtractive process which allows for complex 3D optical, microfluidic and biomedical components and microstructures to be fabricated precisely in a wide variety of polymers. \\nThe reported technique is capable of producing submicron structures with 20 µm depth in biodegradable polymers. The process is based on a VUV (λ=172 nm) photoablative lithographic technique utilizing flat microplasma lamps and does not require a clean room environment or any chemical processing. The fabricated 3D surface may also be used as a mold for PDMS curing.\",\"PeriodicalId\":23471,\"journal\":{\"name\":\"UV and Higher Energy Photonics: From Materials to Applications 2021\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UV and Higher Energy Photonics: From Materials to Applications 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2594868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UV and Higher Energy Photonics: From Materials to Applications 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eco-friendly 3D micromachining of polymers by 172 nm photoablation for optical and microfluidics applications
We report a novel, environmentally-friendly, scalable subtractive process which allows for complex 3D optical, microfluidic and biomedical components and microstructures to be fabricated precisely in a wide variety of polymers.
The reported technique is capable of producing submicron structures with 20 µm depth in biodegradable polymers. The process is based on a VUV (λ=172 nm) photoablative lithographic technique utilizing flat microplasma lamps and does not require a clean room environment or any chemical processing. The fabricated 3D surface may also be used as a mold for PDMS curing.