mSTAR:使用高性能光学频率参考来测试空间中的狭义相对论

T. Schuldt, S. Saraf, A. Stochino, K. Doringshoff, S. Buchman, G. Cutler, J. Lipa, Si Tan, J. Hanson, B. Jaroux, C. Braxmaier, N. Gurlebeck, S. Herrmann, C. Lammerzahl, A. Peters, A. Alfauwaz, Abdulaziz Alhussien, Badr N. Alsuwaidan, T. Al Saud, H. Dittus, U. Johann, S. P. Worden, R. Byer
{"title":"mSTAR:使用高性能光学频率参考来测试空间中的狭义相对论","authors":"T. Schuldt, S. Saraf, A. Stochino, K. Doringshoff, S. Buchman, G. Cutler, J. Lipa, Si Tan, J. Hanson, B. Jaroux, C. Braxmaier, N. Gurlebeck, S. Herrmann, C. Lammerzahl, A. Peters, A. Alfauwaz, Abdulaziz Alhussien, Badr N. Alsuwaidan, T. Al Saud, H. Dittus, U. Johann, S. P. Worden, R. Byer","doi":"10.1109/FCS.2015.7138789","DOIUrl":null,"url":null,"abstract":"The proposed space mission mini Space-Time Asymmetry Research (mSTAR) aims at a test of special relativity by performing a clock-clock comparison experiment in a low-Earth orbit. Using clocks with instabilies at or below the 1·10-15 level at orbit time, the Kennedy-Thorndike coefficient will be measured with an up to two orders of magnitude higher accuracy than the current limit set by ground-based experiments. In the current baseline design, mSTAR utilizes an optical absolute frequency reference based on molecular iodine and a length-reference based on a high-finesse optical cavity. Current efforts aim at a space compatible design of the two clocks and improving the long-term stability of the cavity reference. In an ongoing Phase A study, the feasibility of accommodating the experiment on a SaudiSat 4 bus is investigated.","PeriodicalId":57667,"journal":{"name":"时间频率公报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"mSTAR: Testing special relativity in space using high performance optical frequency references\",\"authors\":\"T. Schuldt, S. Saraf, A. Stochino, K. Doringshoff, S. Buchman, G. Cutler, J. Lipa, Si Tan, J. Hanson, B. Jaroux, C. Braxmaier, N. Gurlebeck, S. Herrmann, C. Lammerzahl, A. Peters, A. Alfauwaz, Abdulaziz Alhussien, Badr N. Alsuwaidan, T. Al Saud, H. Dittus, U. Johann, S. P. Worden, R. Byer\",\"doi\":\"10.1109/FCS.2015.7138789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proposed space mission mini Space-Time Asymmetry Research (mSTAR) aims at a test of special relativity by performing a clock-clock comparison experiment in a low-Earth orbit. Using clocks with instabilies at or below the 1·10-15 level at orbit time, the Kennedy-Thorndike coefficient will be measured with an up to two orders of magnitude higher accuracy than the current limit set by ground-based experiments. In the current baseline design, mSTAR utilizes an optical absolute frequency reference based on molecular iodine and a length-reference based on a high-finesse optical cavity. Current efforts aim at a space compatible design of the two clocks and improving the long-term stability of the cavity reference. In an ongoing Phase A study, the feasibility of accommodating the experiment on a SaudiSat 4 bus is investigated.\",\"PeriodicalId\":57667,\"journal\":{\"name\":\"时间频率公报\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"时间频率公报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2015.7138789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"时间频率公报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/FCS.2015.7138789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

迷你时空不对称研究(mSTAR)任务旨在通过在近地轨道上进行时钟对比实验来验证狭义相对论。使用在轨道时间不稳定在或低于1·10-15水平的时钟,肯尼迪-桑代克系数的测量精度将比目前地面实验设定的极限高两个数量级。在目前的基线设计中,mSTAR采用了基于分子碘的光学绝对频率参考和基于高精细光学腔的长度参考。目前的工作目标是两个时钟的空间兼容设计和提高腔参考的长期稳定性。在正在进行的A阶段研究中,研究了在沙特4号公共汽车上容纳实验的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
mSTAR: Testing special relativity in space using high performance optical frequency references
The proposed space mission mini Space-Time Asymmetry Research (mSTAR) aims at a test of special relativity by performing a clock-clock comparison experiment in a low-Earth orbit. Using clocks with instabilies at or below the 1·10-15 level at orbit time, the Kennedy-Thorndike coefficient will be measured with an up to two orders of magnitude higher accuracy than the current limit set by ground-based experiments. In the current baseline design, mSTAR utilizes an optical absolute frequency reference based on molecular iodine and a length-reference based on a high-finesse optical cavity. Current efforts aim at a space compatible design of the two clocks and improving the long-term stability of the cavity reference. In an ongoing Phase A study, the feasibility of accommodating the experiment on a SaudiSat 4 bus is investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1135
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信