P. Bałon, E. Rejman, B. Kiełbasa, R. Smusz, Grzegorz Szeliga
{"title":"薄壁飞机结构试验研究","authors":"P. Bałon, E. Rejman, B. Kiełbasa, R. Smusz, Grzegorz Szeliga","doi":"10.17814/mechanik.2022.10.16","DOIUrl":null,"url":null,"abstract":"Contemporary aircraft structures, and especially their load-bearing structures, are made almost exclusively as thin-walled structures, which perfectly meet the postulate of minimizing the weight of the structure. While local loss of roofing stability is acceptable under operational load conditions, exceeding the critical load limits of structural elements (frames, stringers) is practically tantamount to the destruction of the structure. The effectiveness of these ideas is influenced by the development of science about materials, processing, and machining processes, as well as the continuous improvement of technological processes. These disciplines allow for the construction of complex, geometrically integral structures that create opportunities not only for a more rational use of material characteristics, but also by their appropriate shaping, significantly increasing the mechanical properties of the supporting structure. The most important advantage in favor of the use of integral systems is economic efficiency, gained by eliminating or limiting assembly operations. Densely ribbed roofing elements belong to the category of load-bearing structure elements which, by reducing the weight which they must support, increase the strength parameters of the load-bearing structure. By reducing the thickness of the coating and, at the same time, introducing sufficiently dense stiffening longitudinal elements, it is possible to obtain a structure with significantly higher critical load values, and consequently a more favorable distribution of gradients and stress levels, which translates directly to an increase in fatigue life. The use of new technologies requires research for evidence purposes, showing that structures manufactured in this way are as safe as those manufactured using conventional methods. For this purpose, the authors conducted tests of the selected structure and performed FEM and experimental verification on the test stand. The results of the tests showed positive results, which confirmed that the method of manufacturing integral structures meets even the stringent requirements set by aviation.","PeriodicalId":38683,"journal":{"name":"Technische Mechanik","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental studies of thin-walled aircraft structures\",\"authors\":\"P. Bałon, E. Rejman, B. Kiełbasa, R. Smusz, Grzegorz Szeliga\",\"doi\":\"10.17814/mechanik.2022.10.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contemporary aircraft structures, and especially their load-bearing structures, are made almost exclusively as thin-walled structures, which perfectly meet the postulate of minimizing the weight of the structure. While local loss of roofing stability is acceptable under operational load conditions, exceeding the critical load limits of structural elements (frames, stringers) is practically tantamount to the destruction of the structure. The effectiveness of these ideas is influenced by the development of science about materials, processing, and machining processes, as well as the continuous improvement of technological processes. These disciplines allow for the construction of complex, geometrically integral structures that create opportunities not only for a more rational use of material characteristics, but also by their appropriate shaping, significantly increasing the mechanical properties of the supporting structure. The most important advantage in favor of the use of integral systems is economic efficiency, gained by eliminating or limiting assembly operations. Densely ribbed roofing elements belong to the category of load-bearing structure elements which, by reducing the weight which they must support, increase the strength parameters of the load-bearing structure. By reducing the thickness of the coating and, at the same time, introducing sufficiently dense stiffening longitudinal elements, it is possible to obtain a structure with significantly higher critical load values, and consequently a more favorable distribution of gradients and stress levels, which translates directly to an increase in fatigue life. The use of new technologies requires research for evidence purposes, showing that structures manufactured in this way are as safe as those manufactured using conventional methods. For this purpose, the authors conducted tests of the selected structure and performed FEM and experimental verification on the test stand. The results of the tests showed positive results, which confirmed that the method of manufacturing integral structures meets even the stringent requirements set by aviation.\",\"PeriodicalId\":38683,\"journal\":{\"name\":\"Technische Mechanik\",\"volume\":\"82 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technische Mechanik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17814/mechanik.2022.10.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technische Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17814/mechanik.2022.10.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Experimental studies of thin-walled aircraft structures
Contemporary aircraft structures, and especially their load-bearing structures, are made almost exclusively as thin-walled structures, which perfectly meet the postulate of minimizing the weight of the structure. While local loss of roofing stability is acceptable under operational load conditions, exceeding the critical load limits of structural elements (frames, stringers) is practically tantamount to the destruction of the structure. The effectiveness of these ideas is influenced by the development of science about materials, processing, and machining processes, as well as the continuous improvement of technological processes. These disciplines allow for the construction of complex, geometrically integral structures that create opportunities not only for a more rational use of material characteristics, but also by their appropriate shaping, significantly increasing the mechanical properties of the supporting structure. The most important advantage in favor of the use of integral systems is economic efficiency, gained by eliminating or limiting assembly operations. Densely ribbed roofing elements belong to the category of load-bearing structure elements which, by reducing the weight which they must support, increase the strength parameters of the load-bearing structure. By reducing the thickness of the coating and, at the same time, introducing sufficiently dense stiffening longitudinal elements, it is possible to obtain a structure with significantly higher critical load values, and consequently a more favorable distribution of gradients and stress levels, which translates directly to an increase in fatigue life. The use of new technologies requires research for evidence purposes, showing that structures manufactured in this way are as safe as those manufactured using conventional methods. For this purpose, the authors conducted tests of the selected structure and performed FEM and experimental verification on the test stand. The results of the tests showed positive results, which confirmed that the method of manufacturing integral structures meets even the stringent requirements set by aviation.
期刊介绍:
In technical mechanics , peer-reviewed papers from all fields of mechanics are published. A major concern is the rapid availability of research results for industry and science. In this sense, especially those contributions are preferred, which include not only new results and findings but also their practical application. The journal Engineering Mechanics publishes refereed original articles on Engineering Mechanics in its broadest sense. It is intended to provide a forum for a rapid transfer of research results to industry and science. In that sense contributions are encouraged the practical application of new results and scientific findings.