{"title":"丙酮-氯仿混合物络合作用的红外光谱研究","authors":"O. Ilchenko, A. Kutsyk, V. Obukhovsky","doi":"10.1155/2014/106178","DOIUrl":null,"url":null,"abstract":"FTIR spectra of acetone-chloroform system with various component ratios were investigated within the spectral range 3950–4550 cm−1. Methods of multivariate curve resolution were applied to decompose the FTIR spectra into specific components of different composition. A method of decomposition based on structural model of solution which contains acetone, chloroform, and complex acetone/chloroform (1 : 1) was proposed. Results of both approaches are in good agreement within the range of measuring error.","PeriodicalId":15106,"journal":{"name":"原子与分子物理学报","volume":"98 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of Complexation in Acetone-Chloroform Mixtures by Infrared Spectroscopy\",\"authors\":\"O. Ilchenko, A. Kutsyk, V. Obukhovsky\",\"doi\":\"10.1155/2014/106178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FTIR spectra of acetone-chloroform system with various component ratios were investigated within the spectral range 3950–4550 cm−1. Methods of multivariate curve resolution were applied to decompose the FTIR spectra into specific components of different composition. A method of decomposition based on structural model of solution which contains acetone, chloroform, and complex acetone/chloroform (1 : 1) was proposed. Results of both approaches are in good agreement within the range of measuring error.\",\"PeriodicalId\":15106,\"journal\":{\"name\":\"原子与分子物理学报\",\"volume\":\"98 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"原子与分子物理学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/106178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"原子与分子物理学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1155/2014/106178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Complexation in Acetone-Chloroform Mixtures by Infrared Spectroscopy
FTIR spectra of acetone-chloroform system with various component ratios were investigated within the spectral range 3950–4550 cm−1. Methods of multivariate curve resolution were applied to decompose the FTIR spectra into specific components of different composition. A method of decomposition based on structural model of solution which contains acetone, chloroform, and complex acetone/chloroform (1 : 1) was proposed. Results of both approaches are in good agreement within the range of measuring error.