扭曲粒子滤波器

N. Whiteley, Anthony Lee
{"title":"扭曲粒子滤波器","authors":"N. Whiteley, Anthony Lee","doi":"10.1214/13-AOS1167","DOIUrl":null,"url":null,"abstract":"We investigate sampling laws for particle algorithms and the influence of these laws on the efficiency of particle approximations of marginal likelihoods in hidden Markov models. Among a broad class of candidates we characterize the essentially unique family of particle system transition kernels which is optimal with respect to an asymptotic-in-time variance growth rate criterion. The sampling structure of the algorithm defined by these optimal transitions turns out to be only subtly different from standard algorithms and yet the fluctuation properties of the estimates it provides can be dramatically different. The structure of the optimal transition suggests a new class of algorithms, which we term \"twisted\" particle filters and which we validate with asymptotic analysis of a more traditional nature, in the regime where the number of particles tends to infinity.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Twisted particle filters\",\"authors\":\"N. Whiteley, Anthony Lee\",\"doi\":\"10.1214/13-AOS1167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate sampling laws for particle algorithms and the influence of these laws on the efficiency of particle approximations of marginal likelihoods in hidden Markov models. Among a broad class of candidates we characterize the essentially unique family of particle system transition kernels which is optimal with respect to an asymptotic-in-time variance growth rate criterion. The sampling structure of the algorithm defined by these optimal transitions turns out to be only subtly different from standard algorithms and yet the fluctuation properties of the estimates it provides can be dramatically different. The structure of the optimal transition suggests a new class of algorithms, which we term \\\"twisted\\\" particle filters and which we validate with asymptotic analysis of a more traditional nature, in the regime where the number of particles tends to infinity.\",\"PeriodicalId\":8446,\"journal\":{\"name\":\"arXiv: Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/13-AOS1167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/13-AOS1167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

我们研究了粒子算法的抽样规律,以及这些规律对隐马尔可夫模型中边际似然粒子近似效率的影响。在广泛的候选类别中,我们描述了本质上独特的粒子系统转移核族,它是相对于渐近的时间方差增长率准则的最优。由这些最优过渡定义的算法的抽样结构与标准算法只有细微的不同,但它提供的估计的波动特性可能有很大的不同。最优跃迁的结构提出了一类新的算法,我们称之为“扭曲”粒子滤波器,我们用更传统性质的渐近分析来验证,在粒子数量趋于无穷大的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted particle filters
We investigate sampling laws for particle algorithms and the influence of these laws on the efficiency of particle approximations of marginal likelihoods in hidden Markov models. Among a broad class of candidates we characterize the essentially unique family of particle system transition kernels which is optimal with respect to an asymptotic-in-time variance growth rate criterion. The sampling structure of the algorithm defined by these optimal transitions turns out to be only subtly different from standard algorithms and yet the fluctuation properties of the estimates it provides can be dramatically different. The structure of the optimal transition suggests a new class of algorithms, which we term "twisted" particle filters and which we validate with asymptotic analysis of a more traditional nature, in the regime where the number of particles tends to infinity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信