{"title":"涉及彩虹色的舒尔数","authors":"Mark Budden","doi":"10.26493/1855-3974.2019.30b","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce two different generalizations of Schur numbers that involve rainbow colorings. Motivated by well-known generalizations of Ramsey numbers, we first define the rainbow Schur number R S ( n ) to be the minimum number of colors needed such that every coloring of {1, 2, …, n } , in which all available colors are used, contains a rainbow solution to a + b = c . It is shown that $$RS(n)=\\floor{\\log _2(n)}+2, \\quad \\mbox{for all } n\\ge 3.$$ Second, we consider the Gallai-Schur number G S ( n ) , defined to be the least natural number such that every n -coloring of {1, 2, …, G S ( n )} that lacks rainbow solutions to the equation a + b = c necessarily contains a monochromatic solution to this equation. By connecting this number with the n -color Gallai-Ramsey number for triangles, it is shown that for all n ≥ 3 , $$GS(n)=\\left\\{ \\begin{array}{ll} 5^k & \\mbox{if} \\ n=2k \\\\ 2\\cdot 5^k & \\mbox{if} \\ n=2k+1.\\end{array} \\right.$$","PeriodicalId":8402,"journal":{"name":"Ars Math. Contemp.","volume":"357 1","pages":"281-288"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Schur numbers involving rainbow colorings\",\"authors\":\"Mark Budden\",\"doi\":\"10.26493/1855-3974.2019.30b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce two different generalizations of Schur numbers that involve rainbow colorings. Motivated by well-known generalizations of Ramsey numbers, we first define the rainbow Schur number R S ( n ) to be the minimum number of colors needed such that every coloring of {1, 2, …, n } , in which all available colors are used, contains a rainbow solution to a + b = c . It is shown that $$RS(n)=\\\\floor{\\\\log _2(n)}+2, \\\\quad \\\\mbox{for all } n\\\\ge 3.$$ Second, we consider the Gallai-Schur number G S ( n ) , defined to be the least natural number such that every n -coloring of {1, 2, …, G S ( n )} that lacks rainbow solutions to the equation a + b = c necessarily contains a monochromatic solution to this equation. By connecting this number with the n -color Gallai-Ramsey number for triangles, it is shown that for all n ≥ 3 , $$GS(n)=\\\\left\\\\{ \\\\begin{array}{ll} 5^k & \\\\mbox{if} \\\\ n=2k \\\\\\\\ 2\\\\cdot 5^k & \\\\mbox{if} \\\\ n=2k+1.\\\\end{array} \\\\right.$$\",\"PeriodicalId\":8402,\"journal\":{\"name\":\"Ars Math. Contemp.\",\"volume\":\"357 1\",\"pages\":\"281-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Math. Contemp.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2019.30b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Math. Contemp.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.2019.30b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
本文介绍了涉及彩虹着色的舒尔数的两种不同的推广。根据Ramsey数的著名推广,我们首先定义彩虹舒尔数rs (n)为所需的最小颜色数,使得每一种颜色 {1, 2,…,n } ,其中包含a + b = c的彩虹解决方案。结果表明 $$RS(n)=\floor{\log _2(n)}+2, \quad \mbox{for all } n\ge 3.$$ 其次,我们考虑Gallai-Schur数G S (n),它被定义为最小的自然数,使得每一个n -着色 {1, 2,…,G S (n)} 缺少方程a + b = c的彩虹解必然包含这个方程的单色解。通过将该数与三角形的n色Gallai-Ramsey数联系起来,表明对于所有n≥3, $$GS(n)=\left\{ \begin{array}{ll} 5^k & \mbox{if} \ n=2k \\ 2\cdot 5^k & \mbox{if} \ n=2k+1.\end{array} \right.$$
In this paper, we introduce two different generalizations of Schur numbers that involve rainbow colorings. Motivated by well-known generalizations of Ramsey numbers, we first define the rainbow Schur number R S ( n ) to be the minimum number of colors needed such that every coloring of {1, 2, …, n } , in which all available colors are used, contains a rainbow solution to a + b = c . It is shown that $$RS(n)=\floor{\log _2(n)}+2, \quad \mbox{for all } n\ge 3.$$ Second, we consider the Gallai-Schur number G S ( n ) , defined to be the least natural number such that every n -coloring of {1, 2, …, G S ( n )} that lacks rainbow solutions to the equation a + b = c necessarily contains a monochromatic solution to this equation. By connecting this number with the n -color Gallai-Ramsey number for triangles, it is shown that for all n ≥ 3 , $$GS(n)=\left\{ \begin{array}{ll} 5^k & \mbox{if} \ n=2k \\ 2\cdot 5^k & \mbox{if} \ n=2k+1.\end{array} \right.$$