温度对同步辐射在人体癌细胞、组织和肿瘤中产生的氧化镉纳米粒子的影响

A. Heidari
{"title":"温度对同步辐射在人体癌细胞、组织和肿瘤中产生的氧化镉纳米粒子的影响","authors":"A. Heidari","doi":"10.14419/IJAC.V6I2.12521","DOIUrl":null,"url":null,"abstract":"In this work, the effect of temperature of the ablation environment on the properties of Cadmium Oxide (CdO) nanoparticles produced by synchrotron radiation is investigated. To produce nanoparticles, synchrotron radiation pulse with 1064 (nm) wavelength is used to emit Cadmium in the human cancer cells, tissues and tumors. All test parameters were kept constant and human cancer cells, tissues and tumors temperature was changed to produce samples at 20°C and 65°C. Then, ATR–FTIR, XRD, TEM and UV–Visible spectroscopy analyses were performed to investigate their properties. The results show that the size of nanoparticles is increased by increase in temperature of ablation environment. In addition, in the current experimental research, Gold (Au)–Cadmium Oxide (CdO) alloy is created at the size of nano. In this regard, same volume of Gold and Cadmium Oxide (CdO) solutions were mixed together and emitted by the synchrotron radiation pulse with wavelength of 532 (nm). The Gold and Cadmium Oxide (CdO) solutions have been produced, separately, using synchrotron radiation ablation process. To produce them, synchrotron radiation pulse with wavelength of 1064 (nm) and pulse width of 7 (ns) and repeating frequency of 5 (Hz) was used. The results show that synchrotron radiation emission with wavelength of 532 (nm) is an appropriate method for producing Gold compounds in the size of nano.  ","PeriodicalId":13723,"journal":{"name":"International Journal of Advanced Chemistry","volume":"362 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":"{\"title\":\"The effect of temperature on cadmium oxide (CdO) nanoparticles produced by synchrotron radiation in the human cancer cells, tissues and tumors\",\"authors\":\"A. Heidari\",\"doi\":\"10.14419/IJAC.V6I2.12521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the effect of temperature of the ablation environment on the properties of Cadmium Oxide (CdO) nanoparticles produced by synchrotron radiation is investigated. To produce nanoparticles, synchrotron radiation pulse with 1064 (nm) wavelength is used to emit Cadmium in the human cancer cells, tissues and tumors. All test parameters were kept constant and human cancer cells, tissues and tumors temperature was changed to produce samples at 20°C and 65°C. Then, ATR–FTIR, XRD, TEM and UV–Visible spectroscopy analyses were performed to investigate their properties. The results show that the size of nanoparticles is increased by increase in temperature of ablation environment. In addition, in the current experimental research, Gold (Au)–Cadmium Oxide (CdO) alloy is created at the size of nano. In this regard, same volume of Gold and Cadmium Oxide (CdO) solutions were mixed together and emitted by the synchrotron radiation pulse with wavelength of 532 (nm). The Gold and Cadmium Oxide (CdO) solutions have been produced, separately, using synchrotron radiation ablation process. To produce them, synchrotron radiation pulse with wavelength of 1064 (nm) and pulse width of 7 (ns) and repeating frequency of 5 (Hz) was used. The results show that synchrotron radiation emission with wavelength of 532 (nm) is an appropriate method for producing Gold compounds in the size of nano.  \",\"PeriodicalId\":13723,\"journal\":{\"name\":\"International Journal of Advanced Chemistry\",\"volume\":\"362 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"77\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/IJAC.V6I2.12521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/IJAC.V6I2.12521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

摘要

本文研究了烧蚀环境温度对同步辐射制备的氧化镉纳米颗粒性能的影响。为了制造纳米粒子,采用1064 (nm)波长的同步辐射脉冲发射人体癌细胞、组织和肿瘤中的镉。保持所有测试参数不变,改变人癌细胞、组织和肿瘤温度,分别在20℃和65℃下制备样品。然后通过ATR-FTIR、XRD、TEM和uv -可见光谱分析对其性能进行表征。结果表明:随着烧蚀环境温度的升高,纳米颗粒的尺寸增大;此外,在目前的实验研究中,金(Au) -氧化镉(CdO)合金被制成纳米尺寸。为此,将相同体积的金和氧化镉(CdO)溶液混合在一起,用波长为532 (nm)的同步辐射脉冲发射。采用同步辐射烧蚀工艺分别制备了金和氧化镉(CdO)溶液。采用波长1064 (nm)、脉宽7 (ns)、重复频率5 (Hz)的同步辐射脉冲制备。结果表明,波长为532 (nm)的同步辐射发射是制备纳米尺寸金化合物的合适方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effect of temperature on cadmium oxide (CdO) nanoparticles produced by synchrotron radiation in the human cancer cells, tissues and tumors
In this work, the effect of temperature of the ablation environment on the properties of Cadmium Oxide (CdO) nanoparticles produced by synchrotron radiation is investigated. To produce nanoparticles, synchrotron radiation pulse with 1064 (nm) wavelength is used to emit Cadmium in the human cancer cells, tissues and tumors. All test parameters were kept constant and human cancer cells, tissues and tumors temperature was changed to produce samples at 20°C and 65°C. Then, ATR–FTIR, XRD, TEM and UV–Visible spectroscopy analyses were performed to investigate their properties. The results show that the size of nanoparticles is increased by increase in temperature of ablation environment. In addition, in the current experimental research, Gold (Au)–Cadmium Oxide (CdO) alloy is created at the size of nano. In this regard, same volume of Gold and Cadmium Oxide (CdO) solutions were mixed together and emitted by the synchrotron radiation pulse with wavelength of 532 (nm). The Gold and Cadmium Oxide (CdO) solutions have been produced, separately, using synchrotron radiation ablation process. To produce them, synchrotron radiation pulse with wavelength of 1064 (nm) and pulse width of 7 (ns) and repeating frequency of 5 (Hz) was used. The results show that synchrotron radiation emission with wavelength of 532 (nm) is an appropriate method for producing Gold compounds in the size of nano.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信