基于小波的非线性加速器问题。自旋轨道运动

A. Fedorova, M. Zeitlin
{"title":"基于小波的非线性加速器问题。自旋轨道运动","authors":"A. Fedorova, M. Zeitlin","doi":"10.1109/PAC.1999.792978","DOIUrl":null,"url":null,"abstract":"In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider a model for spin-orbital motion: orbital dynamics and Thomas-BMT equations for classical spin vector. We represent the solution of this dynamical system in framework of biorthogonal wavelets via the variational approach. We consider a different variational approach, which is applied to each scale.","PeriodicalId":20453,"journal":{"name":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonlinear accelerator problems via wavelets. IV. Spin-orbital motion\",\"authors\":\"A. Fedorova, M. Zeitlin\",\"doi\":\"10.1109/PAC.1999.792978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider a model for spin-orbital motion: orbital dynamics and Thomas-BMT equations for classical spin vector. We represent the solution of this dynamical system in framework of biorthogonal wavelets via the variational approach. We consider a different variational approach, which is applied to each scale.\",\"PeriodicalId\":20453,\"journal\":{\"name\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAC.1999.792978\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAC.1999.792978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这一系列的八篇论文中,我们介绍了从小波分析到多项式近似的方法在许多加速器物理问题中的应用。在这一部分,我们考虑自旋轨道运动的一个模型:轨道动力学和经典自旋矢量的Thomas-BMT方程。我们用变分方法在双正交小波框架中表示了该动力系统的解。我们考虑了一种不同的变分方法,它适用于每个尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear accelerator problems via wavelets. IV. Spin-orbital motion
In this series of eight papers we present the applications of methods from wavelet analysis to polynomial approximations for a number of accelerator physics problems. In this part we consider a model for spin-orbital motion: orbital dynamics and Thomas-BMT equations for classical spin vector. We represent the solution of this dynamical system in framework of biorthogonal wavelets via the variational approach. We consider a different variational approach, which is applied to each scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信