{"title":"一般曲线的仿射不变可变形形状表示","authors":"Astrom","doi":"10.1109/ICCV.2003.1238477","DOIUrl":null,"url":null,"abstract":"Automatic construction of shape models from examples has been the focus of intense research during the last couple of years. These methods have proved to be useful for shape segmentation, tracking and shape understanding. In this paper novel theory to automate shape modelling is described. The theory is intrinsically defined for curves although curves are infinite dimensional objects. The theory is independent of parameterisation and affine transformations. We suggest a method for implementing the ideas and compare it to minimising the description length of the model (MDL). It turns out that the accuracy of the two methods is comparable. Both the MDL and our approach can get stuck at local minima. Our algorithm is less computational expensive and relatively good solutions are obtained after a few iterations. The MDL is, however, better suited at fine-tuning the parameters given good initial estimates to the problem. It is shown that a combination of the two methods outperforms either on its own.","PeriodicalId":72022,"journal":{"name":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","volume":"50 1","pages":"1142-1149"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An affine invariant deformable shape representation for general curves\",\"authors\":\"Astrom\",\"doi\":\"10.1109/ICCV.2003.1238477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic construction of shape models from examples has been the focus of intense research during the last couple of years. These methods have proved to be useful for shape segmentation, tracking and shape understanding. In this paper novel theory to automate shape modelling is described. The theory is intrinsically defined for curves although curves are infinite dimensional objects. The theory is independent of parameterisation and affine transformations. We suggest a method for implementing the ideas and compare it to minimising the description length of the model (MDL). It turns out that the accuracy of the two methods is comparable. Both the MDL and our approach can get stuck at local minima. Our algorithm is less computational expensive and relatively good solutions are obtained after a few iterations. The MDL is, however, better suited at fine-tuning the parameters given good initial estimates to the problem. It is shown that a combination of the two methods outperforms either on its own.\",\"PeriodicalId\":72022,\"journal\":{\"name\":\"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision\",\"volume\":\"50 1\",\"pages\":\"1142-1149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... IEEE International Conference on Computer Vision workshops. IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An affine invariant deformable shape representation for general curves
Automatic construction of shape models from examples has been the focus of intense research during the last couple of years. These methods have proved to be useful for shape segmentation, tracking and shape understanding. In this paper novel theory to automate shape modelling is described. The theory is intrinsically defined for curves although curves are infinite dimensional objects. The theory is independent of parameterisation and affine transformations. We suggest a method for implementing the ideas and compare it to minimising the description length of the model (MDL). It turns out that the accuracy of the two methods is comparable. Both the MDL and our approach can get stuck at local minima. Our algorithm is less computational expensive and relatively good solutions are obtained after a few iterations. The MDL is, however, better suited at fine-tuning the parameters given good initial estimates to the problem. It is shown that a combination of the two methods outperforms either on its own.