智能完井工具现场规模建模,实现最佳采收率

Zhenmu Chen, T. Shaalan, Ghazi D Qahtani, Shahid Manzoor
{"title":"智能完井工具现场规模建模,实现最佳采收率","authors":"Zhenmu Chen, T. Shaalan, Ghazi D Qahtani, Shahid Manzoor","doi":"10.2118/204807-ms","DOIUrl":null,"url":null,"abstract":"\n Flow control devices (FCDs) like inflow control devices (ICDs) and interval control valves (ICVs) (i.e., equalizer) have increased applications in both conventional and unconventional resources. They have been used to mitigate water or gas coning problems for mature fields in conventional reservoirs, to alleviate premature water breakthrough in naturally fractured reservoirs, and to optimize the steam distribution in heavy oil reservoirs. There have been increased trend in using FCDs in the real field. Previously, complex well models have been implemented in a large-scale parallel reservoir simulator by Tareq et al. (2017). The implementation can simulate an intelligent field contains tens to hundreds of multilateral complex wells commonly referred in the literature as maximum reservoir contact (MRC) wells with mechanical components such as ICVs and ICDs.\n In this paper, a new framework to model controlling the FCDs in complex well applications will be presented. The implementation is integrated into a complex well model. It can be easily used to model the dynamical control of devices. Simulation studies using both sector model and field model have been conducted. A systematic full-field operation is used for device control applications of smart wells. Successful application of field level controls in smart wells has the benefit of the improved overall GOSP performance.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field-Scale Modeling of Smart Completion Tools for Optimum Recovery\",\"authors\":\"Zhenmu Chen, T. Shaalan, Ghazi D Qahtani, Shahid Manzoor\",\"doi\":\"10.2118/204807-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Flow control devices (FCDs) like inflow control devices (ICDs) and interval control valves (ICVs) (i.e., equalizer) have increased applications in both conventional and unconventional resources. They have been used to mitigate water or gas coning problems for mature fields in conventional reservoirs, to alleviate premature water breakthrough in naturally fractured reservoirs, and to optimize the steam distribution in heavy oil reservoirs. There have been increased trend in using FCDs in the real field. Previously, complex well models have been implemented in a large-scale parallel reservoir simulator by Tareq et al. (2017). The implementation can simulate an intelligent field contains tens to hundreds of multilateral complex wells commonly referred in the literature as maximum reservoir contact (MRC) wells with mechanical components such as ICVs and ICDs.\\n In this paper, a new framework to model controlling the FCDs in complex well applications will be presented. The implementation is integrated into a complex well model. It can be easily used to model the dynamical control of devices. Simulation studies using both sector model and field model have been conducted. A systematic full-field operation is used for device control applications of smart wells. Successful application of field level controls in smart wells has the benefit of the improved overall GOSP performance.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204807-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204807-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流量控制装置(fcd),如流入控制装置(icd)和间隔控制阀(icv)(即均衡器),在常规和非常规资源中的应用越来越多。它们已被用于缓解常规油藏成熟油田的水窜或气窜问题,缓解天然裂缝性油藏的过早见水问题,以及优化稠油油藏的蒸汽分布。fcd在实际领域的应用有越来越多的趋势。此前,Tareq等人(2017)已经在大型平行油藏模拟器中实现了复杂的井模型。该技术可以模拟一个包含数十至数百口复杂多口井的智能油田,这些复杂多口井通常被称为带有icv和icd等机械部件的最大油藏接触(MRC)井。本文提出了一种复杂井中fcd控制模型的新框架。该方法被集成到一个复杂的井模型中。它可以很容易地用于对设备的动态控制建模。采用扇区模型和场模型进行了模拟研究。智能井的设备控制应用采用了系统的全现场操作。在智能井中成功应用现场液位控制技术,提高了GOSP的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Field-Scale Modeling of Smart Completion Tools for Optimum Recovery
Flow control devices (FCDs) like inflow control devices (ICDs) and interval control valves (ICVs) (i.e., equalizer) have increased applications in both conventional and unconventional resources. They have been used to mitigate water or gas coning problems for mature fields in conventional reservoirs, to alleviate premature water breakthrough in naturally fractured reservoirs, and to optimize the steam distribution in heavy oil reservoirs. There have been increased trend in using FCDs in the real field. Previously, complex well models have been implemented in a large-scale parallel reservoir simulator by Tareq et al. (2017). The implementation can simulate an intelligent field contains tens to hundreds of multilateral complex wells commonly referred in the literature as maximum reservoir contact (MRC) wells with mechanical components such as ICVs and ICDs. In this paper, a new framework to model controlling the FCDs in complex well applications will be presented. The implementation is integrated into a complex well model. It can be easily used to model the dynamical control of devices. Simulation studies using both sector model and field model have been conducted. A systematic full-field operation is used for device control applications of smart wells. Successful application of field level controls in smart wells has the benefit of the improved overall GOSP performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信