北约5.56 mm、APM2 7.62 mm和AK-47 7.82 mm子弹在近墙处以2.0马赫运动的对比计算分析

IF 1.2 Q3 ENGINEERING, MECHANICAL
Samruddhi Salunke, Suryapratap S. Shinde, Tanmay B. Gholap, D. Sahoo
{"title":"北约5.56 mm、APM2 7.62 mm和AK-47 7.82 mm子弹在近墙处以2.0马赫运动的对比计算分析","authors":"Samruddhi Salunke, Suryapratap S. Shinde, Tanmay B. Gholap, D. Sahoo","doi":"10.5937/fme2301081s","DOIUrl":null,"url":null,"abstract":"Comparative Computational Analysis of NATO 5.56 mm, APM2 7.62 mm and AK-47 7.82 mm Bullet Moving at Mach 2.0 in Close Vicinity to the Wall Various rifles require unique bullets. Each bullet has its capability, speed, and impact on the target. In metropolitan warfare, several bullets are shot close to the solid walls. These near walls affect the pressure distribution over the entire asymmetric bullet. The influence of a reflected shock depends on the angle at which it was reflected and the altitude from the ground to the body of the bullet. The current research emphasizes three bullets of varying diameters used in different types of guns. The first bullet is of NATO 5.56 mm, the second is APM2's 7.62 mm bullet, and the third is a 7.82 mm bullet from an AK-47 rifle. For 2-D steady computations, the supersonic speed of Mach 2 is considered to analyze the flowfield across all three bullets. The heights of the bullet are taken considering the height-to-diameter ratios (h/D ratio) from 0.5 to 3.0. The Mach contour drawn from the numerical simulations is used to analyze the flowfield, and aerodynamic coefficients like lift, drag, and moment are also plotted to analyze the ground effects on the projectile. The comparative analysis showed that the trend of shock wave reflections was similar in the bullets till h/D of 1.5. The APM2 bullet experienced maximum drag, followed by AK-47's 7.82 mm and NATO's 5.56 mm bullet. The 7.82 mm bullet experienced maximum lifting force at h/D = 1.0 due to its larger surface area than the other two ammo. The 7.82 mm bullet experienced a nose-up moment, whereas the other two faced a nose-down moment. As the altitude of the bullets from the ground increased, the ground effect appearing on the bullets reduced. The present comparative analysis research shows that it is suitable to fire an AK-47 bullet from h/D greater than 2.0 and the other two bullets from an altitude greater than or equal to h/D of 3.0.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":"27 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative computational analysis of NATO 5.56 mm, APM2 7.62 mm and AK-47 7.82 mm bullet moving at Mach 2.0 in close vicinity to the wall\",\"authors\":\"Samruddhi Salunke, Suryapratap S. Shinde, Tanmay B. Gholap, D. Sahoo\",\"doi\":\"10.5937/fme2301081s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Comparative Computational Analysis of NATO 5.56 mm, APM2 7.62 mm and AK-47 7.82 mm Bullet Moving at Mach 2.0 in Close Vicinity to the Wall Various rifles require unique bullets. Each bullet has its capability, speed, and impact on the target. In metropolitan warfare, several bullets are shot close to the solid walls. These near walls affect the pressure distribution over the entire asymmetric bullet. The influence of a reflected shock depends on the angle at which it was reflected and the altitude from the ground to the body of the bullet. The current research emphasizes three bullets of varying diameters used in different types of guns. The first bullet is of NATO 5.56 mm, the second is APM2's 7.62 mm bullet, and the third is a 7.82 mm bullet from an AK-47 rifle. For 2-D steady computations, the supersonic speed of Mach 2 is considered to analyze the flowfield across all three bullets. The heights of the bullet are taken considering the height-to-diameter ratios (h/D ratio) from 0.5 to 3.0. The Mach contour drawn from the numerical simulations is used to analyze the flowfield, and aerodynamic coefficients like lift, drag, and moment are also plotted to analyze the ground effects on the projectile. The comparative analysis showed that the trend of shock wave reflections was similar in the bullets till h/D of 1.5. The APM2 bullet experienced maximum drag, followed by AK-47's 7.82 mm and NATO's 5.56 mm bullet. The 7.82 mm bullet experienced maximum lifting force at h/D = 1.0 due to its larger surface area than the other two ammo. The 7.82 mm bullet experienced a nose-up moment, whereas the other two faced a nose-down moment. As the altitude of the bullets from the ground increased, the ground effect appearing on the bullets reduced. The present comparative analysis research shows that it is suitable to fire an AK-47 bullet from h/D greater than 2.0 and the other two bullets from an altitude greater than or equal to h/D of 3.0.\",\"PeriodicalId\":12218,\"journal\":{\"name\":\"FME Transactions\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FME Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/fme2301081s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2301081s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

北约5.56毫米、APM2 7.62毫米和AK-47 7.82毫米子弹在2.0马赫近墙移动的比较计算分析各种步枪需要独特的子弹。每颗子弹都有它的能力、速度和对目标的影响。在都市战争中,有几颗子弹是在靠近坚固的墙壁的地方射出的。这些近壁影响了整个非对称子弹的压力分布。反射冲击波的影响取决于它被反射的角度和从地面到子弹体的高度。目前的研究重点是三种不同口径的子弹,用于不同类型的枪支。第一颗子弹是北约5.56毫米,第二颗是APM2的7.62毫米子弹,第三颗是AK-47步枪的7.82毫米子弹。在二维定常计算中,考虑了2马赫的超音速速度,分析了三种弹间的流场。子弹的高度考虑高径比(h/D比)在0.5到3.0之间。利用数值模拟得到的马赫数曲线分析了流场,并绘制了升力、阻力、力矩等气动系数分析了地面对弹丸的影响。对比分析表明,在h/D为1.5之前,弹体内的激波反射趋势基本一致。APM2子弹的阻力最大,其次是AK-47的7.82毫米子弹和北约的5.56毫米子弹。7.82 mm子弹在h/D = 1.0时的升力最大,这是由于其比其他两种弹药的表面积更大。7.82毫米口径的子弹经历了头朝上的瞬间,而另外两颗子弹则经历了头朝下的瞬间。随着子弹离地面高度的增加,子弹上出现的地面效应减小。本文的对比分析研究表明,AK-47的一颗子弹在h/D大于2.0的高度发射适宜,另外两颗子弹在h/D大于或等于3.0的高度发射适宜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative computational analysis of NATO 5.56 mm, APM2 7.62 mm and AK-47 7.82 mm bullet moving at Mach 2.0 in close vicinity to the wall
Comparative Computational Analysis of NATO 5.56 mm, APM2 7.62 mm and AK-47 7.82 mm Bullet Moving at Mach 2.0 in Close Vicinity to the Wall Various rifles require unique bullets. Each bullet has its capability, speed, and impact on the target. In metropolitan warfare, several bullets are shot close to the solid walls. These near walls affect the pressure distribution over the entire asymmetric bullet. The influence of a reflected shock depends on the angle at which it was reflected and the altitude from the ground to the body of the bullet. The current research emphasizes three bullets of varying diameters used in different types of guns. The first bullet is of NATO 5.56 mm, the second is APM2's 7.62 mm bullet, and the third is a 7.82 mm bullet from an AK-47 rifle. For 2-D steady computations, the supersonic speed of Mach 2 is considered to analyze the flowfield across all three bullets. The heights of the bullet are taken considering the height-to-diameter ratios (h/D ratio) from 0.5 to 3.0. The Mach contour drawn from the numerical simulations is used to analyze the flowfield, and aerodynamic coefficients like lift, drag, and moment are also plotted to analyze the ground effects on the projectile. The comparative analysis showed that the trend of shock wave reflections was similar in the bullets till h/D of 1.5. The APM2 bullet experienced maximum drag, followed by AK-47's 7.82 mm and NATO's 5.56 mm bullet. The 7.82 mm bullet experienced maximum lifting force at h/D = 1.0 due to its larger surface area than the other two ammo. The 7.82 mm bullet experienced a nose-up moment, whereas the other two faced a nose-down moment. As the altitude of the bullets from the ground increased, the ground effect appearing on the bullets reduced. The present comparative analysis research shows that it is suitable to fire an AK-47 bullet from h/D greater than 2.0 and the other two bullets from an altitude greater than or equal to h/D of 3.0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FME Transactions
FME Transactions ENGINEERING, MECHANICAL-
CiteScore
3.60
自引率
31.20%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信