H.264压缩域实时视频对象分割

C. Mak, W. Cham
{"title":"H.264压缩域实时视频对象分割","authors":"C. Mak, W. Cham","doi":"10.1049/IET-IPR.2008.0093","DOIUrl":null,"url":null,"abstract":"In this study the authors proposed a real-time video object segmentation algorithm that works in the H.264 compressed domain. The algorithm utilises the motion information from the H.264 compressed bit stream to identify background motion model and moving objects. In order to preserve spatial and temporal continuity of objects, Markov random field (MRF) is used to model the foreground field. Quantised transform coefficients of the residual frame are also used to improve segmentation result. Experimental results show that the proposed algorithm can effectively extract moving objects from different kinds of sequences. The computation time of the segmentation process is merely about 16 ms per frame for CIF size frame, allowing the algorithm to be applied in real-time applications.","PeriodicalId":13486,"journal":{"name":"IET Image Process.","volume":"409 1","pages":"272-285"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Real-time video object segmentation in H.264 compressed domain\",\"authors\":\"C. Mak, W. Cham\",\"doi\":\"10.1049/IET-IPR.2008.0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study the authors proposed a real-time video object segmentation algorithm that works in the H.264 compressed domain. The algorithm utilises the motion information from the H.264 compressed bit stream to identify background motion model and moving objects. In order to preserve spatial and temporal continuity of objects, Markov random field (MRF) is used to model the foreground field. Quantised transform coefficients of the residual frame are also used to improve segmentation result. Experimental results show that the proposed algorithm can effectively extract moving objects from different kinds of sequences. The computation time of the segmentation process is merely about 16 ms per frame for CIF size frame, allowing the algorithm to be applied in real-time applications.\",\"PeriodicalId\":13486,\"journal\":{\"name\":\"IET Image Process.\",\"volume\":\"409 1\",\"pages\":\"272-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Image Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/IET-IPR.2008.0093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-IPR.2008.0093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文提出了一种适用于H.264压缩域的实时视频目标分割算法。该算法利用H.264压缩码流中的运动信息来识别背景运动模型和运动对象。为了保持目标的时空连续性,利用马尔可夫随机场(MRF)对前景场进行建模。利用残差帧的量化变换系数来改善分割效果。实验结果表明,该算法可以有效地从不同类型的序列中提取运动目标。对于CIF大小的帧,分割过程的计算时间仅为每帧16ms左右,可以应用于实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time video object segmentation in H.264 compressed domain
In this study the authors proposed a real-time video object segmentation algorithm that works in the H.264 compressed domain. The algorithm utilises the motion information from the H.264 compressed bit stream to identify background motion model and moving objects. In order to preserve spatial and temporal continuity of objects, Markov random field (MRF) is used to model the foreground field. Quantised transform coefficients of the residual frame are also used to improve segmentation result. Experimental results show that the proposed algorithm can effectively extract moving objects from different kinds of sequences. The computation time of the segmentation process is merely about 16 ms per frame for CIF size frame, allowing the algorithm to be applied in real-time applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信