{"title":"相对论强斯科特猜想:一个简短的证明","authors":"R. Frank, Konstantin Merz, H. Siedentop","doi":"10.1142/9789811272158_0003","DOIUrl":null,"url":null,"abstract":"We consider heavy neutral atoms of atomic number $Z$ modeled with kinetic energy $(c^2p^2+c^4)^{1/2}-c^2$ used already by Chandrasekhar. We study the behavior of the one-particle ground state density on the length scale $Z^{-1}$ in the limit $Z,c\\to\\infty$ keeping $Z/c$ fixed. We give a short proof of a recent result by the authors and Barry Simon showing the convergence of the density to the relativistic hydrogenic density on this scale.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Relativistic Strong Scott Conjecture: A Short Proof\",\"authors\":\"R. Frank, Konstantin Merz, H. Siedentop\",\"doi\":\"10.1142/9789811272158_0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider heavy neutral atoms of atomic number $Z$ modeled with kinetic energy $(c^2p^2+c^4)^{1/2}-c^2$ used already by Chandrasekhar. We study the behavior of the one-particle ground state density on the length scale $Z^{-1}$ in the limit $Z,c\\\\to\\\\infty$ keeping $Z/c$ fixed. We give a short proof of a recent result by the authors and Barry Simon showing the convergence of the density to the relativistic hydrogenic density on this scale.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9789811272158_0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811272158_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relativistic Strong Scott Conjecture: A Short Proof
We consider heavy neutral atoms of atomic number $Z$ modeled with kinetic energy $(c^2p^2+c^4)^{1/2}-c^2$ used already by Chandrasekhar. We study the behavior of the one-particle ground state density on the length scale $Z^{-1}$ in the limit $Z,c\to\infty$ keeping $Z/c$ fixed. We give a short proof of a recent result by the authors and Barry Simon showing the convergence of the density to the relativistic hydrogenic density on this scale.