Vijay Muralidharan , Anup K. Ekbote , Arun D. Mahindrakar
{"title":"四旋翼系统的有限时间控制","authors":"Vijay Muralidharan , Anup K. Ekbote , Arun D. Mahindrakar","doi":"10.3182/20140313-3-IN-3024.00008","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the finite-time control of a quadrotor unmanned aerial vehicle about the hovering position by converting the linearized model to its Brunovský canonical form. It is shown that all the sliding surfaces have relative degree five or three. Simulations are carried out using higher order continuous finite time controllers.</p></div>","PeriodicalId":13260,"journal":{"name":"IFAC Proceedings Volumes","volume":"47 1","pages":"Pages 643-647"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3182/20140313-3-IN-3024.00008","citationCount":"2","resultStr":"{\"title\":\"Finite-Time Control of a Quadrotor System\",\"authors\":\"Vijay Muralidharan , Anup K. Ekbote , Arun D. Mahindrakar\",\"doi\":\"10.3182/20140313-3-IN-3024.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the finite-time control of a quadrotor unmanned aerial vehicle about the hovering position by converting the linearized model to its Brunovský canonical form. It is shown that all the sliding surfaces have relative degree five or three. Simulations are carried out using higher order continuous finite time controllers.</p></div>\",\"PeriodicalId\":13260,\"journal\":{\"name\":\"IFAC Proceedings Volumes\",\"volume\":\"47 1\",\"pages\":\"Pages 643-647\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3182/20140313-3-IN-3024.00008\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Proceedings Volumes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474667016327239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Proceedings Volumes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474667016327239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper deals with the finite-time control of a quadrotor unmanned aerial vehicle about the hovering position by converting the linearized model to its Brunovský canonical form. It is shown that all the sliding surfaces have relative degree five or three. Simulations are carried out using higher order continuous finite time controllers.