H. Cölfen, H. Bürgi, D. Chernyshov, M. Stekiel, A. Chumakova, A. Bosak, B. Wehinger, B. Winkler
{"title":"海胆脊椎生物源方解石的介晶结构及力学性能。","authors":"H. Cölfen, H. Bürgi, D. Chernyshov, M. Stekiel, A. Chumakova, A. Bosak, B. Wehinger, B. Winkler","doi":"10.1107/s2052520622000634","DOIUrl":null,"url":null,"abstract":"Using X-ray scattering, we measured detailed maps of the diffuse scattering intensity distribution and a number of phonon dispersion branches for a single crystal of inorganically formed natural calcite and for high-quality mesocrystals of biogenic calcite from a Mediterranean sea urchin spine. A comparison shows that the known differences in the mechanical properties between the `strong' biogenic and `brittle' abiotic material should be attributed to the mesoscopic architecture of the crystal rather than to a modification of the calcite crystal structure. The data are rationalized by comparing them to the results of ab initio model calculations of lattice dynamics. For the mesocrystal, they are augmented by the evaluation of the faceting of the constituent nanocrystals.","PeriodicalId":7080,"journal":{"name":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","volume":"1 1","pages":"356-358"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesocrystalline structure and mechanical properties of biogenic calcite from sea urchin spine.\",\"authors\":\"H. Cölfen, H. Bürgi, D. Chernyshov, M. Stekiel, A. Chumakova, A. Bosak, B. Wehinger, B. Winkler\",\"doi\":\"10.1107/s2052520622000634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using X-ray scattering, we measured detailed maps of the diffuse scattering intensity distribution and a number of phonon dispersion branches for a single crystal of inorganically formed natural calcite and for high-quality mesocrystals of biogenic calcite from a Mediterranean sea urchin spine. A comparison shows that the known differences in the mechanical properties between the `strong' biogenic and `brittle' abiotic material should be attributed to the mesoscopic architecture of the crystal rather than to a modification of the calcite crystal structure. The data are rationalized by comparing them to the results of ab initio model calculations of lattice dynamics. For the mesocrystal, they are augmented by the evaluation of the faceting of the constituent nanocrystals.\",\"PeriodicalId\":7080,\"journal\":{\"name\":\"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials\",\"volume\":\"1 1\",\"pages\":\"356-358\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1107/s2052520622000634\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/s2052520622000634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesocrystalline structure and mechanical properties of biogenic calcite from sea urchin spine.
Using X-ray scattering, we measured detailed maps of the diffuse scattering intensity distribution and a number of phonon dispersion branches for a single crystal of inorganically formed natural calcite and for high-quality mesocrystals of biogenic calcite from a Mediterranean sea urchin spine. A comparison shows that the known differences in the mechanical properties between the `strong' biogenic and `brittle' abiotic material should be attributed to the mesoscopic architecture of the crystal rather than to a modification of the calcite crystal structure. The data are rationalized by comparing them to the results of ab initio model calculations of lattice dynamics. For the mesocrystal, they are augmented by the evaluation of the faceting of the constituent nanocrystals.