弹性波最优控制的自适应有限元方法

A. Kröner
{"title":"弹性波最优控制的自适应有限元方法","authors":"A. Kröner","doi":"10.3182/20120215-3-AT-3016.00197","DOIUrl":null,"url":null,"abstract":"Abstract In this paper a posteriori error estimates for space-time finite element discretizations for optimal control problems governed by the dynamical Lame system are considered using the dual weighted residual method (DWR). We apply techniques developed in Kroner (2011a), where optimal control problems for second order hyperbolic equations are considered. The provided error estimator separates the influences of different parts of the discretization (time, space, and control discretization). This allows us to set up an adaptive algorithm which improves the accuracy of the computed solutions by construction of locally refined meshes. We present a numerical example showing a speedup in cpu-time as well as a reduction in degrees of freedom in comparison to uniform mesh refinement.","PeriodicalId":100895,"journal":{"name":"Mathematical Modelling","volume":"33 1","pages":"1112-1117"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive finite element methods for optimal control ofelastic waves\",\"authors\":\"A. Kröner\",\"doi\":\"10.3182/20120215-3-AT-3016.00197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper a posteriori error estimates for space-time finite element discretizations for optimal control problems governed by the dynamical Lame system are considered using the dual weighted residual method (DWR). We apply techniques developed in Kroner (2011a), where optimal control problems for second order hyperbolic equations are considered. The provided error estimator separates the influences of different parts of the discretization (time, space, and control discretization). This allows us to set up an adaptive algorithm which improves the accuracy of the computed solutions by construction of locally refined meshes. We present a numerical example showing a speedup in cpu-time as well as a reduction in degrees of freedom in comparison to uniform mesh refinement.\",\"PeriodicalId\":100895,\"journal\":{\"name\":\"Mathematical Modelling\",\"volume\":\"33 1\",\"pages\":\"1112-1117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3182/20120215-3-AT-3016.00197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3182/20120215-3-AT-3016.00197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文利用对偶加权残差法(DWR)研究了动态Lame系统最优控制问题时空有限元离散化的后验误差估计。我们应用Kroner (2011a)中开发的技术,其中考虑了二阶双曲方程的最优控制问题。所提供的误差估计器分离了离散化的不同部分(时间、空间和控制离散化)的影响。这允许我们建立一种自适应算法,该算法通过构建局部精细网格来提高计算解的精度。我们给出了一个数值例子,表明与均匀网格细化相比,cpu时间加快了,自由度降低了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive finite element methods for optimal control ofelastic waves
Abstract In this paper a posteriori error estimates for space-time finite element discretizations for optimal control problems governed by the dynamical Lame system are considered using the dual weighted residual method (DWR). We apply techniques developed in Kroner (2011a), where optimal control problems for second order hyperbolic equations are considered. The provided error estimator separates the influences of different parts of the discretization (time, space, and control discretization). This allows us to set up an adaptive algorithm which improves the accuracy of the computed solutions by construction of locally refined meshes. We present a numerical example showing a speedup in cpu-time as well as a reduction in degrees of freedom in comparison to uniform mesh refinement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信