改进一种正则化PET图像重构随机算法

C. Delplancke, M. Gurnell, J. Latz, P. Markiewicz, C. Schönlieb, Matthias Joachim Ehrhardt
{"title":"改进一种正则化PET图像重构随机算法","authors":"C. Delplancke, M. Gurnell, J. Latz, P. Markiewicz, C. Schönlieb, Matthias Joachim Ehrhardt","doi":"10.1109/NSS/MIC42677.2020.9508013","DOIUrl":null,"url":null,"abstract":"Positron Emission Tomography (PET) image reconstruction presents challenges related to the large scale of data to be processed, which affects reconstruction speed, and the need to include regularizers to improve image quality. Among the methods proposed to overcome these challenges, the recently introduced Stochastic Primal Dual Hybrid Gradient (SPDHG) algorithm combines the ability to deal with regularizers like Total Variation and to process large datasets by random subsampling. We present two contributions regarding the step-sizes of SPDHG: i) larger step-sizes facilitated by a new formula, and ii) a numerical method to calibrate, in the context of PET reconstruction, the tradeoff between primal and dual progression, which is common to all primal-dual algorithms. We validate improvements in speed reconstruction on real PET data from the Siemens Biograph mMR.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"427 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving a Stochastic Algorithm for Regularized PET Image Reconstruction\",\"authors\":\"C. Delplancke, M. Gurnell, J. Latz, P. Markiewicz, C. Schönlieb, Matthias Joachim Ehrhardt\",\"doi\":\"10.1109/NSS/MIC42677.2020.9508013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positron Emission Tomography (PET) image reconstruction presents challenges related to the large scale of data to be processed, which affects reconstruction speed, and the need to include regularizers to improve image quality. Among the methods proposed to overcome these challenges, the recently introduced Stochastic Primal Dual Hybrid Gradient (SPDHG) algorithm combines the ability to deal with regularizers like Total Variation and to process large datasets by random subsampling. We present two contributions regarding the step-sizes of SPDHG: i) larger step-sizes facilitated by a new formula, and ii) a numerical method to calibrate, in the context of PET reconstruction, the tradeoff between primal and dual progression, which is common to all primal-dual algorithms. We validate improvements in speed reconstruction on real PET data from the Siemens Biograph mMR.\",\"PeriodicalId\":6760,\"journal\":{\"name\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"volume\":\"427 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSS/MIC42677.2020.9508013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9508013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

正电子发射断层扫描(PET)图像重建面临着与需要处理的大规模数据相关的挑战,这影响了重建速度,并且需要包含正则化器来提高图像质量。在克服这些挑战的方法中,最近引入的随机原始对偶混合梯度(SPDHG)算法结合了处理总变异等正则化器和通过随机子抽样处理大型数据集的能力。我们对SPDHG的步长提出了两个贡献:i)新公式促进了更大的步长,ii)在PET重建的背景下,校准原始和对偶级数之间的权衡的数值方法,这是所有原始-对偶算法所共有的。我们在西门子Biograph mMR的真实PET数据上验证了速度重建的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving a Stochastic Algorithm for Regularized PET Image Reconstruction
Positron Emission Tomography (PET) image reconstruction presents challenges related to the large scale of data to be processed, which affects reconstruction speed, and the need to include regularizers to improve image quality. Among the methods proposed to overcome these challenges, the recently introduced Stochastic Primal Dual Hybrid Gradient (SPDHG) algorithm combines the ability to deal with regularizers like Total Variation and to process large datasets by random subsampling. We present two contributions regarding the step-sizes of SPDHG: i) larger step-sizes facilitated by a new formula, and ii) a numerical method to calibrate, in the context of PET reconstruction, the tradeoff between primal and dual progression, which is common to all primal-dual algorithms. We validate improvements in speed reconstruction on real PET data from the Siemens Biograph mMR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信