{"title":"风力发电用永磁同步发电机的自抗扰控制","authors":"M. A. Aguilar-Orduña, H. Sira-Ramírez","doi":"10.35429/jrd.2021.19.7.9.21","DOIUrl":null,"url":null,"abstract":"With sight on maximizing the amount of energy that can be extracted, by a wind turbine, from the wind, this article solves the maximum power point tracking problem for a permanent magnet synchronous generator-based horizontal wind turbine connected to the electrical grid. A three-phase back-to-back converter, which allows a decoupling between the electrical grid and the generator, is employed as an interphase between the wind turbine and the utility grid. Based on the mathematical model in the synchronous reference frame and taking advantage of the differential flatness property the system exhibits, controllers based on the active disturbance rejection methodology are designed, in this work, to track the curve of maximum extracted power from the wind and manage the generated electricity into the grid. At the same time, the phase angle of the electricity generated is synchronized with the phase angle of the electrical grid. Numerical simulations are performed to support the controllers presented in this work.","PeriodicalId":55034,"journal":{"name":"IBM Journal of Research and Development","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active disturbance rejection control of a permanent magnet synchronous generator for wind turbine applications\",\"authors\":\"M. A. Aguilar-Orduña, H. Sira-Ramírez\",\"doi\":\"10.35429/jrd.2021.19.7.9.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With sight on maximizing the amount of energy that can be extracted, by a wind turbine, from the wind, this article solves the maximum power point tracking problem for a permanent magnet synchronous generator-based horizontal wind turbine connected to the electrical grid. A three-phase back-to-back converter, which allows a decoupling between the electrical grid and the generator, is employed as an interphase between the wind turbine and the utility grid. Based on the mathematical model in the synchronous reference frame and taking advantage of the differential flatness property the system exhibits, controllers based on the active disturbance rejection methodology are designed, in this work, to track the curve of maximum extracted power from the wind and manage the generated electricity into the grid. At the same time, the phase angle of the electricity generated is synchronized with the phase angle of the electrical grid. Numerical simulations are performed to support the controllers presented in this work.\",\"PeriodicalId\":55034,\"journal\":{\"name\":\"IBM Journal of Research and Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IBM Journal of Research and Development\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.35429/jrd.2021.19.7.9.21\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBM Journal of Research and Development","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.35429/jrd.2021.19.7.9.21","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Active disturbance rejection control of a permanent magnet synchronous generator for wind turbine applications
With sight on maximizing the amount of energy that can be extracted, by a wind turbine, from the wind, this article solves the maximum power point tracking problem for a permanent magnet synchronous generator-based horizontal wind turbine connected to the electrical grid. A three-phase back-to-back converter, which allows a decoupling between the electrical grid and the generator, is employed as an interphase between the wind turbine and the utility grid. Based on the mathematical model in the synchronous reference frame and taking advantage of the differential flatness property the system exhibits, controllers based on the active disturbance rejection methodology are designed, in this work, to track the curve of maximum extracted power from the wind and manage the generated electricity into the grid. At the same time, the phase angle of the electricity generated is synchronized with the phase angle of the electrical grid. Numerical simulations are performed to support the controllers presented in this work.
期刊介绍:
The IBM Journal of Research and Development is a peer-reviewed technical journal, published bimonthly, which features the work of authors in the science, technology and engineering of information systems. Papers are written for the worldwide scientific research and development community and knowledgeable professionals.
Submitted papers are welcome from the IBM technical community and from non-IBM authors on topics relevant to the scientific and technical content of the Journal.