无界内存图灵机的不可区分混淆

Venkata Koppula, Allison Bishop, Brent Waters
{"title":"无界内存图灵机的不可区分混淆","authors":"Venkata Koppula, Allison Bishop, Brent Waters","doi":"10.1145/2746539.2746614","DOIUrl":null,"url":null,"abstract":"We show how to build indistinguishability obfuscation (iO) for Turing Machines where the overhead is polynomial in the security parameter λ, machine description |M| and input size |x| (with only a negligible correctness error). In particular, we avoid growing polynomially with the maximum space of a computation. Our construction is based on iO for circuits, one way functions and injective pseudo random generators. Our results are based on new \"selective enforcement\" techniques. Here we first create a primitive called positional accumulators that allows for a small commitment to a much larger storage. The commitment is unconditionally sound for a select piece of the storage. This primitive serves as an \"iO-friendly\" tool that allows us to make two different programs equivalent at different stages of a proof. The pieces of storage that are selected depend on what hybrid stage we are at in a proof. We first build up our enforcement ideas in a simpler context of \"message hiding encodings\" and work our way up to indistinguishability obfuscation.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"Indistinguishability Obfuscation for Turing Machines with Unbounded Memory\",\"authors\":\"Venkata Koppula, Allison Bishop, Brent Waters\",\"doi\":\"10.1145/2746539.2746614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how to build indistinguishability obfuscation (iO) for Turing Machines where the overhead is polynomial in the security parameter λ, machine description |M| and input size |x| (with only a negligible correctness error). In particular, we avoid growing polynomially with the maximum space of a computation. Our construction is based on iO for circuits, one way functions and injective pseudo random generators. Our results are based on new \\\"selective enforcement\\\" techniques. Here we first create a primitive called positional accumulators that allows for a small commitment to a much larger storage. The commitment is unconditionally sound for a select piece of the storage. This primitive serves as an \\\"iO-friendly\\\" tool that allows us to make two different programs equivalent at different stages of a proof. The pieces of storage that are selected depend on what hybrid stage we are at in a proof. We first build up our enforcement ideas in a simpler context of \\\"message hiding encodings\\\" and work our way up to indistinguishability obfuscation.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 130

摘要

我们展示了如何为图灵机构建不可区分混淆(iO),其中开销是安全参数λ、机器描述|M|和输入大小|x|的多项式(只有可以忽略不计的正确性错误)。特别是,我们避免了在计算的最大空间中多项式地增长。我们的构造是基于电路的iO、单向函数和内射伪随机发生器。我们的结果是基于新的“选择性执行”技术。这里,我们首先创建了一个称为位置累加器的原语,它允许对大得多的存储空间进行小的承诺。对于存储的选定部分,承诺是无条件有效的。这个原语作为一个“io友好”的工具,允许我们在证明的不同阶段使两个不同的程序等效。所选择的存储块取决于我们在证明中的混合阶段。我们首先在一个更简单的“消息隐藏编码”上下文中构建我们的实施思想,并逐步实现不可区分混淆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Indistinguishability Obfuscation for Turing Machines with Unbounded Memory
We show how to build indistinguishability obfuscation (iO) for Turing Machines where the overhead is polynomial in the security parameter λ, machine description |M| and input size |x| (with only a negligible correctness error). In particular, we avoid growing polynomially with the maximum space of a computation. Our construction is based on iO for circuits, one way functions and injective pseudo random generators. Our results are based on new "selective enforcement" techniques. Here we first create a primitive called positional accumulators that allows for a small commitment to a much larger storage. The commitment is unconditionally sound for a select piece of the storage. This primitive serves as an "iO-friendly" tool that allows us to make two different programs equivalent at different stages of a proof. The pieces of storage that are selected depend on what hybrid stage we are at in a proof. We first build up our enforcement ideas in a simpler context of "message hiding encodings" and work our way up to indistinguishability obfuscation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信