通过Meltdown窃取神经网络

Hoyong Jeong, Dohyun Ryu, Junbeom Hur
{"title":"通过Meltdown窃取神经网络","authors":"Hoyong Jeong, Dohyun Ryu, Junbeom Hur","doi":"10.1109/ICOIN50884.2021.9333926","DOIUrl":null,"url":null,"abstract":"Deep learning services are now deployed in various fields on top of cloud infrastructures. In such cloud environment, virtualization technology provides logically independent and isolated computing space for each tenant. However, recent studies demonstrate that by leveraging vulnerabilities of virtualization techniques and shared processor architectures in the cloud system, various side-channels can be established between cloud tenants. In this paper, we propose a novel attack scenario that can steal internal information of deep learning models by exploiting the Meltdown vulnerability in a multitenant system environment. On the basis of our experiment, the proposed attack method could extract internal information of a TensorFlow deep learning service with 92.875% accuracy and 1.325kB/s extraction speed.","PeriodicalId":6741,"journal":{"name":"2021 International Conference on Information Networking (ICOIN)","volume":"114 1","pages":"36-38"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neural Network Stealing via Meltdown\",\"authors\":\"Hoyong Jeong, Dohyun Ryu, Junbeom Hur\",\"doi\":\"10.1109/ICOIN50884.2021.9333926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning services are now deployed in various fields on top of cloud infrastructures. In such cloud environment, virtualization technology provides logically independent and isolated computing space for each tenant. However, recent studies demonstrate that by leveraging vulnerabilities of virtualization techniques and shared processor architectures in the cloud system, various side-channels can be established between cloud tenants. In this paper, we propose a novel attack scenario that can steal internal information of deep learning models by exploiting the Meltdown vulnerability in a multitenant system environment. On the basis of our experiment, the proposed attack method could extract internal information of a TensorFlow deep learning service with 92.875% accuracy and 1.325kB/s extraction speed.\",\"PeriodicalId\":6741,\"journal\":{\"name\":\"2021 International Conference on Information Networking (ICOIN)\",\"volume\":\"114 1\",\"pages\":\"36-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN50884.2021.9333926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN50884.2021.9333926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

深度学习服务现在部署在云基础设施之上的各个领域。在这样的云环境中,虚拟化技术为每个租户提供了逻辑上独立、隔离的计算空间。然而,最近的研究表明,通过利用云系统中虚拟化技术和共享处理器架构的漏洞,可以在云租户之间建立各种侧通道。在本文中,我们提出了一种新的攻击场景,可以通过利用多租户系统环境中的Meltdown漏洞窃取深度学习模型的内部信息。在实验基础上,提出的攻击方法能够以92.875%的准确率和1.325kB/s的提取速度提取TensorFlow深度学习服务的内部信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Stealing via Meltdown
Deep learning services are now deployed in various fields on top of cloud infrastructures. In such cloud environment, virtualization technology provides logically independent and isolated computing space for each tenant. However, recent studies demonstrate that by leveraging vulnerabilities of virtualization techniques and shared processor architectures in the cloud system, various side-channels can be established between cloud tenants. In this paper, we propose a novel attack scenario that can steal internal information of deep learning models by exploiting the Meltdown vulnerability in a multitenant system environment. On the basis of our experiment, the proposed attack method could extract internal information of a TensorFlow deep learning service with 92.875% accuracy and 1.325kB/s extraction speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信