H. Ashtiani, S. Ben-David, Nicholas J. A. Harvey, Christopher Liaw, Abbas Mehrabian, Y. Plan
{"title":"基于压缩方案的高斯混合鲁棒学习的近最优样本复杂度界","authors":"H. Ashtiani, S. Ben-David, Nicholas J. A. Harvey, Christopher Liaw, Abbas Mehrabian, Y. Plan","doi":"10.1145/3417994","DOIUrl":null,"url":null,"abstract":"We introduce a novel technique for distribution learning based on a notion of sample compression. Any class of distributions that allows such a compression scheme can be learned with few samples. Moreover, if a class of distributions has such a compression scheme, then so do the classes of products and mixtures of those distributions. As an application of this technique, we prove that ˜Θ(kd2/ε2) samples are necessary and sufficient for learning a mixture of k Gaussians in Rd, up to error ε in total variation distance. This improves both the known upper bounds and lower bounds for this problem. For mixtures of axis-aligned Gaussians, we show that Õ(kd/ε2) samples suffice, matching a known lower bound. Moreover, these results hold in an agnostic learning (or robust estimation) setting, in which the target distribution is only approximately a mixture of Gaussians. Our main upper bound is proven by showing that the class of Gaussians in Rd admits a small compression scheme.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"9 1","pages":"1 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Near-optimal Sample Complexity Bounds for Robust Learning of Gaussian Mixtures via Compression Schemes\",\"authors\":\"H. Ashtiani, S. Ben-David, Nicholas J. A. Harvey, Christopher Liaw, Abbas Mehrabian, Y. Plan\",\"doi\":\"10.1145/3417994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel technique for distribution learning based on a notion of sample compression. Any class of distributions that allows such a compression scheme can be learned with few samples. Moreover, if a class of distributions has such a compression scheme, then so do the classes of products and mixtures of those distributions. As an application of this technique, we prove that ˜Θ(kd2/ε2) samples are necessary and sufficient for learning a mixture of k Gaussians in Rd, up to error ε in total variation distance. This improves both the known upper bounds and lower bounds for this problem. For mixtures of axis-aligned Gaussians, we show that Õ(kd/ε2) samples suffice, matching a known lower bound. Moreover, these results hold in an agnostic learning (or robust estimation) setting, in which the target distribution is only approximately a mixture of Gaussians. Our main upper bound is proven by showing that the class of Gaussians in Rd admits a small compression scheme.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"9 1\",\"pages\":\"1 - 42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3417994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3417994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near-optimal Sample Complexity Bounds for Robust Learning of Gaussian Mixtures via Compression Schemes
We introduce a novel technique for distribution learning based on a notion of sample compression. Any class of distributions that allows such a compression scheme can be learned with few samples. Moreover, if a class of distributions has such a compression scheme, then so do the classes of products and mixtures of those distributions. As an application of this technique, we prove that ˜Θ(kd2/ε2) samples are necessary and sufficient for learning a mixture of k Gaussians in Rd, up to error ε in total variation distance. This improves both the known upper bounds and lower bounds for this problem. For mixtures of axis-aligned Gaussians, we show that Õ(kd/ε2) samples suffice, matching a known lower bound. Moreover, these results hold in an agnostic learning (or robust estimation) setting, in which the target distribution is only approximately a mixture of Gaussians. Our main upper bound is proven by showing that the class of Gaussians in Rd admits a small compression scheme.