{"title":"几何弧和刚性空间的基本群","authors":"Piotr Achinger, Marcin Lara, Alex Youcis","doi":"10.1515/crelle-2023-0013","DOIUrl":null,"url":null,"abstract":"Abstract We develop the notion of a geometric covering of a rigid space 𝑋, which yields a larger class of covering spaces than that studied previously by de Jong. Geometric coverings are closed under disjoint unions and are étale local on 𝑋. If 𝑋 is connected, its geometric coverings form a tame infinite Galois category and hence are classified by a topological group. The definition is based on the property of lifting of “geometric arcs” and is meant to be an analogue of the notion developed for schemes by Bhatt and Scholze.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geometric arcs and fundamental groups of rigid spaces\",\"authors\":\"Piotr Achinger, Marcin Lara, Alex Youcis\",\"doi\":\"10.1515/crelle-2023-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop the notion of a geometric covering of a rigid space 𝑋, which yields a larger class of covering spaces than that studied previously by de Jong. Geometric coverings are closed under disjoint unions and are étale local on 𝑋. If 𝑋 is connected, its geometric coverings form a tame infinite Galois category and hence are classified by a topological group. The definition is based on the property of lifting of “geometric arcs” and is meant to be an analogue of the notion developed for schemes by Bhatt and Scholze.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2023-0013\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0013","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Geometric arcs and fundamental groups of rigid spaces
Abstract We develop the notion of a geometric covering of a rigid space 𝑋, which yields a larger class of covering spaces than that studied previously by de Jong. Geometric coverings are closed under disjoint unions and are étale local on 𝑋. If 𝑋 is connected, its geometric coverings form a tame infinite Galois category and hence are classified by a topological group. The definition is based on the property of lifting of “geometric arcs” and is meant to be an analogue of the notion developed for schemes by Bhatt and Scholze.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.