基于KNN算法的静态图像微笑检测

T. George, Sumi P. Potty, Sneha Jose
{"title":"基于KNN算法的静态图像微笑检测","authors":"T. George, Sumi P. Potty, Sneha Jose","doi":"10.1109/ICCICCT.2014.6993006","DOIUrl":null,"url":null,"abstract":"Reliable detection and recognition of facial expression from still images in the unconstrained real world situations has many potential applications. Smile detection can be used in many applications include modeling systems for psychological studies on human emotional responses, expression recognition technologies, extending image search capabilities etc. This paper proposes an experimental study of smile detection in embedded environment using Raspberry Pi board, by extracting mouth and eye pair from images using Haar-cascade classifier and train these images using KNN matching algorithm. The relatively simple K- Nearest Neighbor is used because of its lazy learning efficiency. OpenCV- 2.3.1(Open Source Computer Vision) library is used as the imaging library. The experiments explored that the proposed approach has an accuracy of 66.6%.","PeriodicalId":6615,"journal":{"name":"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)","volume":"1 1","pages":"461-465"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Smile detection from still images using KNN algorithm\",\"authors\":\"T. George, Sumi P. Potty, Sneha Jose\",\"doi\":\"10.1109/ICCICCT.2014.6993006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable detection and recognition of facial expression from still images in the unconstrained real world situations has many potential applications. Smile detection can be used in many applications include modeling systems for psychological studies on human emotional responses, expression recognition technologies, extending image search capabilities etc. This paper proposes an experimental study of smile detection in embedded environment using Raspberry Pi board, by extracting mouth and eye pair from images using Haar-cascade classifier and train these images using KNN matching algorithm. The relatively simple K- Nearest Neighbor is used because of its lazy learning efficiency. OpenCV- 2.3.1(Open Source Computer Vision) library is used as the imaging library. The experiments explored that the proposed approach has an accuracy of 66.6%.\",\"PeriodicalId\":6615,\"journal\":{\"name\":\"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)\",\"volume\":\"1 1\",\"pages\":\"461-465\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCICCT.2014.6993006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICCT.2014.6993006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

在不受约束的现实世界中,从静止图像中可靠地检测和识别面部表情具有许多潜在的应用。微笑检测可用于许多应用,包括人类情绪反应的心理研究建模系统,表情识别技术,扩展图像搜索功能等。本文提出了一种基于树莓派板的嵌入式环境下微笑检测的实验研究,利用haar级联分类器从图像中提取嘴和眼睛对,并使用KNN匹配算法对图像进行训练。使用相对简单的K近邻算法是因为它的惰性学习效率。使用OpenCV- 2.3.1(Open Source Computer Vision)库作为图像库。实验表明,该方法的准确率为66.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smile detection from still images using KNN algorithm
Reliable detection and recognition of facial expression from still images in the unconstrained real world situations has many potential applications. Smile detection can be used in many applications include modeling systems for psychological studies on human emotional responses, expression recognition technologies, extending image search capabilities etc. This paper proposes an experimental study of smile detection in embedded environment using Raspberry Pi board, by extracting mouth and eye pair from images using Haar-cascade classifier and train these images using KNN matching algorithm. The relatively simple K- Nearest Neighbor is used because of its lazy learning efficiency. OpenCV- 2.3.1(Open Source Computer Vision) library is used as the imaging library. The experiments explored that the proposed approach has an accuracy of 66.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信