口语对话系统中情绪状态的分层两级建模

Oxana Verkholyak, D. Fedotov, Heysem Kaya, Yang Zhang, Alexey Karpov
{"title":"口语对话系统中情绪状态的分层两级建模","authors":"Oxana Verkholyak, D. Fedotov, Heysem Kaya, Yang Zhang, Alexey Karpov","doi":"10.1109/ICASSP.2019.8683240","DOIUrl":null,"url":null,"abstract":"Emotions occur in complex social interactions, and thus processing of isolated utterances may not be sufficient to grasp the nature of underlying emotional states. Dialog speech provides useful information about context that explains nuances of emotions and their transitions. Context can be defined on different levels; this paper proposes a hierarchical context modelling approach based on RNN-LSTM architecture, which models acoustical context on the frame level and partner’s emotional context on the dialog level. The method is proved effective together with cross-corpus training setup and domain adaptation technique in a set of speaker independent cross-validation experiments on IEMOCAP corpus for three levels of activation and valence classification. As a result, the state-of-the-art on this corpus is advanced for both dimensions using only acoustic modality.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"310 1","pages":"6700-6704"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Hierarchical Two-level Modelling of Emotional States in Spoken Dialog Systems\",\"authors\":\"Oxana Verkholyak, D. Fedotov, Heysem Kaya, Yang Zhang, Alexey Karpov\",\"doi\":\"10.1109/ICASSP.2019.8683240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions occur in complex social interactions, and thus processing of isolated utterances may not be sufficient to grasp the nature of underlying emotional states. Dialog speech provides useful information about context that explains nuances of emotions and their transitions. Context can be defined on different levels; this paper proposes a hierarchical context modelling approach based on RNN-LSTM architecture, which models acoustical context on the frame level and partner’s emotional context on the dialog level. The method is proved effective together with cross-corpus training setup and domain adaptation technique in a set of speaker independent cross-validation experiments on IEMOCAP corpus for three levels of activation and valence classification. As a result, the state-of-the-art on this corpus is advanced for both dimensions using only acoustic modality.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"310 1\",\"pages\":\"6700-6704\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

情绪发生在复杂的社会互动中,因此处理孤立的话语可能不足以掌握潜在情绪状态的本质。对话语言提供了有关上下文的有用信息,解释了情绪及其转换的细微差别。语境可以在不同的层次上定义;本文提出了一种基于RNN-LSTM架构的分层上下文建模方法,该方法在框架层面对声音上下文进行建模,在对话层面对伴侣的情感上下文进行建模。在IEMOCAP语料库上进行了三种激活和价态分类的独立于说话人的交叉验证实验,验证了该方法与跨语料库训练设置和领域自适应技术的有效性。因此,仅使用声学模态,该语料库的最新技术在两个维度上都是先进的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Two-level Modelling of Emotional States in Spoken Dialog Systems
Emotions occur in complex social interactions, and thus processing of isolated utterances may not be sufficient to grasp the nature of underlying emotional states. Dialog speech provides useful information about context that explains nuances of emotions and their transitions. Context can be defined on different levels; this paper proposes a hierarchical context modelling approach based on RNN-LSTM architecture, which models acoustical context on the frame level and partner’s emotional context on the dialog level. The method is proved effective together with cross-corpus training setup and domain adaptation technique in a set of speaker independent cross-validation experiments on IEMOCAP corpus for three levels of activation and valence classification. As a result, the state-of-the-art on this corpus is advanced for both dimensions using only acoustic modality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信