{"title":"t2束上曲面的最小属问题","authors":"R. Nakashima","doi":"10.2140/AGT.2021.21.893","DOIUrl":null,"url":null,"abstract":"For any positive integer $g$, we completely determine the minimal genus function for $\\Sigma_{g}\\times T^{2}$. We show that the lower bound given by the adjunction inequality is not sharp for some class in $H_{2}(\\Sigma_{g}\\times T^{2})$. However, we construct a suitable embedded surface for each class and we have exact values of minimal genus functions.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Minimal genus problem for T2–bundles over\\nsurfaces\",\"authors\":\"R. Nakashima\",\"doi\":\"10.2140/AGT.2021.21.893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For any positive integer $g$, we completely determine the minimal genus function for $\\\\Sigma_{g}\\\\times T^{2}$. We show that the lower bound given by the adjunction inequality is not sharp for some class in $H_{2}(\\\\Sigma_{g}\\\\times T^{2})$. However, we construct a suitable embedded surface for each class and we have exact values of minimal genus functions.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/AGT.2021.21.893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/AGT.2021.21.893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimal genus problem for T2–bundles over
surfaces
For any positive integer $g$, we completely determine the minimal genus function for $\Sigma_{g}\times T^{2}$. We show that the lower bound given by the adjunction inequality is not sharp for some class in $H_{2}(\Sigma_{g}\times T^{2})$. However, we construct a suitable embedded surface for each class and we have exact values of minimal genus functions.