面积凸性、l∞正则化和无向多商品流

Jonah Sherman
{"title":"面积凸性、l∞正则化和无向多商品流","authors":"Jonah Sherman","doi":"10.1145/3055399.3055501","DOIUrl":null,"url":null,"abstract":"We show the strong-convexity assumption of regularization-based methods for solving bilinear saddle point problems may be relaxed to a weaker notion of area-convexity with respect to an alternating bilinear form. This allows bypassing the infamous '' barrier for strongly convex regularizers that has stalled progress on a number of algorithmic problems. Applying area-convex regularization, we present a nearly-linear time approximation algorithm for solving matrix inequality systems A X ≤ B over right-stochastic matrices X. By combining that algorithm with existing work on preconditioning maximum-flow, we obtain a nearly-linear time approximation algorithm for maximum concurrent flow in undirected graphs: given an undirected, capacitated graph with m edges and k demand vectors, the algorithm takes Õ(mkε'1) time and outputs k flows routing the specified demands with total congestion at most (1+ε) times optimal.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"15 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Area-convexity, l∞ regularization, and undirected multicommodity flow\",\"authors\":\"Jonah Sherman\",\"doi\":\"10.1145/3055399.3055501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the strong-convexity assumption of regularization-based methods for solving bilinear saddle point problems may be relaxed to a weaker notion of area-convexity with respect to an alternating bilinear form. This allows bypassing the infamous '' barrier for strongly convex regularizers that has stalled progress on a number of algorithmic problems. Applying area-convex regularization, we present a nearly-linear time approximation algorithm for solving matrix inequality systems A X ≤ B over right-stochastic matrices X. By combining that algorithm with existing work on preconditioning maximum-flow, we obtain a nearly-linear time approximation algorithm for maximum concurrent flow in undirected graphs: given an undirected, capacitated graph with m edges and k demand vectors, the algorithm takes Õ(mkε'1) time and outputs k flows routing the specified demands with total congestion at most (1+ε) times optimal.\",\"PeriodicalId\":20615,\"journal\":{\"name\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"15 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3055399.3055501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

我们证明了求解双线性鞍点问题的基于正则化方法的强凸性假设可以放宽为相对于交替双线性形式的较弱的面积凸性概念。这可以绕过臭名昭著的“强凸正则化障碍”,该障碍阻碍了许多算法问题的进展。应用面积-凸正则化,给出了求解矩阵不等式系统a X≤B在右随机矩阵X上的近线性时间逼近算法,并结合已有的最大流量预处理工作,得到了无向图中最大并发流量的近线性时间逼近算法:给定一个有m条边和k个需求向量的无向、有容量的图,该算法花费Õ(mkε'1)时间,输出k个流量,路由指定的需求,总拥塞最多(1+ε)次最优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Area-convexity, l∞ regularization, and undirected multicommodity flow
We show the strong-convexity assumption of regularization-based methods for solving bilinear saddle point problems may be relaxed to a weaker notion of area-convexity with respect to an alternating bilinear form. This allows bypassing the infamous '' barrier for strongly convex regularizers that has stalled progress on a number of algorithmic problems. Applying area-convex regularization, we present a nearly-linear time approximation algorithm for solving matrix inequality systems A X ≤ B over right-stochastic matrices X. By combining that algorithm with existing work on preconditioning maximum-flow, we obtain a nearly-linear time approximation algorithm for maximum concurrent flow in undirected graphs: given an undirected, capacitated graph with m edges and k demand vectors, the algorithm takes Õ(mkε'1) time and outputs k flows routing the specified demands with total congestion at most (1+ε) times optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信