拉希泊松计数模型的残差分析

Q4 Medicine
Naiara Santos, Jorge L. Bazán
{"title":"拉希泊松计数模型的残差分析","authors":"Naiara Santos, Jorge L. Bazán","doi":"10.28951/RBB.V39I1.531","DOIUrl":null,"url":null,"abstract":"A Rasch Poisson counts (RPC) model is described to identify individual latent traits and facilities of the items of tests that model the error (or success) count in several tasks over time, instead of modeling the correct responses to items in a test as in the dichotomous item response theory (IRT) model. These types of tests can be more informative than traditional tests. To estimate the model parameters, we consider a Bayesian approach using the integrated nested Laplace approximation (INLA). We develop residual analysis to assess model fit by introducing randomized quantile residuals for items. The data used to illustrate the method comes from 228 people who took a selective attention test. The test has 20 blocks (items), with a time limit of 15 seconds for each block. The results of the residual analysis of the RPC were promising and indicated that the studied attention data are not well fitted by the RPC model.","PeriodicalId":36293,"journal":{"name":"Revista Brasileira de Biometria","volume":"288 1","pages":"206"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"RESIDUAL ANALYSIS IN RASCH POISSON COUNTS MODELS\",\"authors\":\"Naiara Santos, Jorge L. Bazán\",\"doi\":\"10.28951/RBB.V39I1.531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Rasch Poisson counts (RPC) model is described to identify individual latent traits and facilities of the items of tests that model the error (or success) count in several tasks over time, instead of modeling the correct responses to items in a test as in the dichotomous item response theory (IRT) model. These types of tests can be more informative than traditional tests. To estimate the model parameters, we consider a Bayesian approach using the integrated nested Laplace approximation (INLA). We develop residual analysis to assess model fit by introducing randomized quantile residuals for items. The data used to illustrate the method comes from 228 people who took a selective attention test. The test has 20 blocks (items), with a time limit of 15 seconds for each block. The results of the residual analysis of the RPC were promising and indicated that the studied attention data are not well fitted by the RPC model.\",\"PeriodicalId\":36293,\"journal\":{\"name\":\"Revista Brasileira de Biometria\",\"volume\":\"288 1\",\"pages\":\"206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Biometria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28951/RBB.V39I1.531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Biometria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28951/RBB.V39I1.531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2

摘要

Rasch Poisson计数(RPC)模型用于识别测试项目的个体潜在特征和设施,这些特征和设施可以模拟多个任务中随时间的错误(或成功)计数,而不是像二分项目反应理论(IRT)模型那样建模对测试项目的正确反应。这些类型的测试可以比传统测试提供更多信息。为了估计模型参数,我们考虑使用集成嵌套拉普拉斯近似(INLA)的贝叶斯方法。我们发展残差分析,通过引入随机分位数残差项目来评估模型拟合。用于说明该方法的数据来自228名参加选择性注意力测试的人。测试有20个模块(项目),每个模块的时间限制为15秒。残差分析结果表明,研究的注意力数据不能很好地拟合到RPC模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RESIDUAL ANALYSIS IN RASCH POISSON COUNTS MODELS
A Rasch Poisson counts (RPC) model is described to identify individual latent traits and facilities of the items of tests that model the error (or success) count in several tasks over time, instead of modeling the correct responses to items in a test as in the dichotomous item response theory (IRT) model. These types of tests can be more informative than traditional tests. To estimate the model parameters, we consider a Bayesian approach using the integrated nested Laplace approximation (INLA). We develop residual analysis to assess model fit by introducing randomized quantile residuals for items. The data used to illustrate the method comes from 228 people who took a selective attention test. The test has 20 blocks (items), with a time limit of 15 seconds for each block. The results of the residual analysis of the RPC were promising and indicated that the studied attention data are not well fitted by the RPC model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Biometria
Revista Brasileira de Biometria Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
自引率
0.00%
发文量
0
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信