Anderson L. A. de Araujo, S. Heidarkhani, G. Afrouzi, S. Moradi
{"title":"具有变指数和非齐次诺伊曼条件的非局部问题的变分方法","authors":"Anderson L. A. de Araujo, S. Heidarkhani, G. Afrouzi, S. Moradi","doi":"10.52846/ami.v48i1.1365","DOIUrl":null,"url":null,"abstract":"We study the existence of at least one weak solution for p(x)-Kirchhoff-type problems of nonhomogeneous Neumann conditions. Our technical approach is based on variational methods. Some examples are presented to demonstrate the application of our main results.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"11 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A variational approach for nonlocal problems with variable exponent and nonhomogeneous Neumann conditions\",\"authors\":\"Anderson L. A. de Araujo, S. Heidarkhani, G. Afrouzi, S. Moradi\",\"doi\":\"10.52846/ami.v48i1.1365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the existence of at least one weak solution for p(x)-Kirchhoff-type problems of nonhomogeneous Neumann conditions. Our technical approach is based on variational methods. Some examples are presented to demonstrate the application of our main results.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v48i1.1365\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v48i1.1365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
A variational approach for nonlocal problems with variable exponent and nonhomogeneous Neumann conditions
We study the existence of at least one weak solution for p(x)-Kirchhoff-type problems of nonhomogeneous Neumann conditions. Our technical approach is based on variational methods. Some examples are presented to demonstrate the application of our main results.