{"title":"太平洋中微子实验","authors":"E. Resconi, Pamela Collaboration","doi":"10.22323/1.395.0024","DOIUrl":null,"url":null,"abstract":"Neutrino telescopes are unrivaled tools to explore the Universe at its most extreme. The current generation of telescopes has shown that very high energy neutrinos are produced in the cosmos, even with hints of their possible origin, and that these neutrinos can be used to probe our understanding of particle physics at otherwise inaccessible regimes. The fluxes, however, are low, which means newer, larger telescopes are needed. Here we present the Pacific Ocean Neutrino Experiment, a proposal to build a multi-cubic-kilometer neutrino telescope off the coast of Canada. The idea builds on the experience accumulated by previous sea-water missions, and the technical expertise of Ocean Networks Canada that would facilitate deploying such a large infrastructure. The design and physics potential of the first stage and a full-scale P-ONE are discussed.","PeriodicalId":20473,"journal":{"name":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"The Pacific Ocean Neutrino Experiment\",\"authors\":\"E. Resconi, Pamela Collaboration\",\"doi\":\"10.22323/1.395.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutrino telescopes are unrivaled tools to explore the Universe at its most extreme. The current generation of telescopes has shown that very high energy neutrinos are produced in the cosmos, even with hints of their possible origin, and that these neutrinos can be used to probe our understanding of particle physics at otherwise inaccessible regimes. The fluxes, however, are low, which means newer, larger telescopes are needed. Here we present the Pacific Ocean Neutrino Experiment, a proposal to build a multi-cubic-kilometer neutrino telescope off the coast of Canada. The idea builds on the experience accumulated by previous sea-water missions, and the technical expertise of Ocean Networks Canada that would facilitate deploying such a large infrastructure. The design and physics potential of the first stage and a full-scale P-ONE are discussed.\",\"PeriodicalId\":20473,\"journal\":{\"name\":\"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.395.0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.395.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neutrino telescopes are unrivaled tools to explore the Universe at its most extreme. The current generation of telescopes has shown that very high energy neutrinos are produced in the cosmos, even with hints of their possible origin, and that these neutrinos can be used to probe our understanding of particle physics at otherwise inaccessible regimes. The fluxes, however, are low, which means newer, larger telescopes are needed. Here we present the Pacific Ocean Neutrino Experiment, a proposal to build a multi-cubic-kilometer neutrino telescope off the coast of Canada. The idea builds on the experience accumulated by previous sea-water missions, and the technical expertise of Ocean Networks Canada that would facilitate deploying such a large infrastructure. The design and physics potential of the first stage and a full-scale P-ONE are discussed.