Michael Gintz, Matthew Kortje, Megan Laurence, Zili Wang, Yong Yang
{"title":"幂集上的少轨道置换群。2","authors":"Michael Gintz, Matthew Kortje, Megan Laurence, Zili Wang, Yong Yang","doi":"10.5486/pmd.2023.9392","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":54530,"journal":{"name":"Publicationes Mathematicae-Debrecen","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permutation groups with few orbits on the power set. II\",\"authors\":\"Michael Gintz, Matthew Kortje, Megan Laurence, Zili Wang, Yong Yang\",\"doi\":\"10.5486/pmd.2023.9392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":54530,\"journal\":{\"name\":\"Publicationes Mathematicae-Debrecen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publicationes Mathematicae-Debrecen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5486/pmd.2023.9392\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publicationes Mathematicae-Debrecen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5486/pmd.2023.9392","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Publicationes Mathematicae Debrecen appears quarterly and publishes original research papers on pure mathematical topics. It welcomes contributed papers that develop interesting, or important, new mathematical ideas and results or solve outstanding problems. All papers are refereed for correctness and suitability for publication.
Publicationes Mathematicae Debrecen is covered by the Mathematical Reviews, Zentralblatt fur Mathematik, Scopus, the Web of Science, the Science Abstracts and the Science Citation Index.