E. S. Lemos, Emiliano F. Fiorentini, A. Bonilla-Petriciolet, L. Escudero
{"title":"葡萄秸秆生物吸附法去除天然水体及废水中的孔雀石绿","authors":"E. S. Lemos, Emiliano F. Fiorentini, A. Bonilla-Petriciolet, L. Escudero","doi":"10.1155/2023/6695937","DOIUrl":null,"url":null,"abstract":"The efficiency of the grape stalk as a biosorbent for the malachite green removal from natural waters and industrial effluents was investigated in this work. For the optimization of experimental variables, a central composite design was used, in which the effect of pH and biosorbent dose was evaluated on biosorption capacity and removal percentage. Optimal parameters of pH 5 and biosorbent dose of 0.80 g L-1 allowed a malachite green removal percentage of 87.7%. Data obtained from kinetic studies were fitted with the pseudo-second-order model. The maximum biosorption capacity was determined using the Langmuir equilibrium model, reaching a value of 214.2 mg g-1. The biosorption process was thermodynamically favorable and spontaneous at room temperature. The calculated value of biosorption enthalpy change indicated that the nature of the process was exothermic and physical. The biosorption process was applied in natural waters and industrial effluent samples, obtaining removal percentages up to 84.3%, which demonstrates the efficiency of grape stalks for the treatment of complex matrices.","PeriodicalId":7279,"journal":{"name":"Adsorption Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Malachite Green Removal by Grape Stalks Biosorption from Natural Waters and Effluents\",\"authors\":\"E. S. Lemos, Emiliano F. Fiorentini, A. Bonilla-Petriciolet, L. Escudero\",\"doi\":\"10.1155/2023/6695937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficiency of the grape stalk as a biosorbent for the malachite green removal from natural waters and industrial effluents was investigated in this work. For the optimization of experimental variables, a central composite design was used, in which the effect of pH and biosorbent dose was evaluated on biosorption capacity and removal percentage. Optimal parameters of pH 5 and biosorbent dose of 0.80 g L-1 allowed a malachite green removal percentage of 87.7%. Data obtained from kinetic studies were fitted with the pseudo-second-order model. The maximum biosorption capacity was determined using the Langmuir equilibrium model, reaching a value of 214.2 mg g-1. The biosorption process was thermodynamically favorable and spontaneous at room temperature. The calculated value of biosorption enthalpy change indicated that the nature of the process was exothermic and physical. The biosorption process was applied in natural waters and industrial effluent samples, obtaining removal percentages up to 84.3%, which demonstrates the efficiency of grape stalks for the treatment of complex matrices.\",\"PeriodicalId\":7279,\"journal\":{\"name\":\"Adsorption Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adsorption Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6695937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6695937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
研究了葡萄秸秆作为生物吸附剂对天然水体和工业废水中孔雀石绿的去除效果。为了优化实验变量,采用中心复合设计,考察pH和生物吸附剂剂量对生物吸附能力和去除率的影响。pH为5,生物吸附剂用量为0.80 g L-1时,孔雀石绿去除率为87.7%。动力学研究得到的数据用伪二阶模型拟合。使用Langmuir平衡模型确定了最大生物吸附量,达到214.2 mg g-1。在室温下,生物吸附过程具有良好的热力学条件和自发性。生物吸附焓变的计算值表明,该过程具有放热和物理性质。将生物吸附工艺应用于天然水体和工业废水样品中,去除率达84.3%,证明了葡萄秸秆处理复杂基质的效率。
Malachite Green Removal by Grape Stalks Biosorption from Natural Waters and Effluents
The efficiency of the grape stalk as a biosorbent for the malachite green removal from natural waters and industrial effluents was investigated in this work. For the optimization of experimental variables, a central composite design was used, in which the effect of pH and biosorbent dose was evaluated on biosorption capacity and removal percentage. Optimal parameters of pH 5 and biosorbent dose of 0.80 g L-1 allowed a malachite green removal percentage of 87.7%. Data obtained from kinetic studies were fitted with the pseudo-second-order model. The maximum biosorption capacity was determined using the Langmuir equilibrium model, reaching a value of 214.2 mg g-1. The biosorption process was thermodynamically favorable and spontaneous at room temperature. The calculated value of biosorption enthalpy change indicated that the nature of the process was exothermic and physical. The biosorption process was applied in natural waters and industrial effluent samples, obtaining removal percentages up to 84.3%, which demonstrates the efficiency of grape stalks for the treatment of complex matrices.