M. Togawa, S. Kühn, C. Shah, P. Amaro, R. Steinbrügge, J. Stierhof, N. Hell, M. Rosner, K. Fujii, M. Bissinger, R. Ballhausen, M. Hoesch, J. Seltmann, Sungnam Park, Filipe Grilo, F. Porter, J. Santos, M. Chung, T. Stöhlker, J. Wilms, T. Pfeifer, G. Brown, M. Leutenegger, S. Bernitt, José R. Crespo López-Urrutia
{"title":"少电子离子中强双电子-单光子跃迁的观察","authors":"M. Togawa, S. Kühn, C. Shah, P. Amaro, R. Steinbrügge, J. Stierhof, N. Hell, M. Rosner, K. Fujii, M. Bissinger, R. Ballhausen, M. Hoesch, J. Seltmann, Sungnam Park, Filipe Grilo, F. Porter, J. Santos, M. Chung, T. Stöhlker, J. Wilms, T. Pfeifer, G. Brown, M. Leutenegger, S. Bernitt, José R. Crespo López-Urrutia","doi":"10.1103/physreva.102.052831","DOIUrl":null,"url":null,"abstract":"We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$ reveal strong two-electron--one-photon (TEOP) transitions. We find that for the $[(1s\\,2s)_1\\,5p_{3/2}]_{3/2;1/2}$ states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states $[(1s\\,2p_{3/2})_1\\,4s]_{3/2;1/2}$ of a Li-like satellite blend of the He-like $K\\alpha$ transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger.","PeriodicalId":8441,"journal":{"name":"arXiv: Atomic Physics","volume":"368 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Observation of strong two-electron–one-photon transitions in few-electron ions\",\"authors\":\"M. Togawa, S. Kühn, C. Shah, P. Amaro, R. Steinbrügge, J. Stierhof, N. Hell, M. Rosner, K. Fujii, M. Bissinger, R. Ballhausen, M. Hoesch, J. Seltmann, Sungnam Park, Filipe Grilo, F. Porter, J. Santos, M. Chung, T. Stöhlker, J. Wilms, T. Pfeifer, G. Brown, M. Leutenegger, S. Bernitt, José R. Crespo López-Urrutia\",\"doi\":\"10.1103/physreva.102.052831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$ reveal strong two-electron--one-photon (TEOP) transitions. We find that for the $[(1s\\\\,2s)_1\\\\,5p_{3/2}]_{3/2;1/2}$ states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states $[(1s\\\\,2p_{3/2})_1\\\\,4s]_{3/2;1/2}$ of a Li-like satellite blend of the He-like $K\\\\alpha$ transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger.\",\"PeriodicalId\":8441,\"journal\":{\"name\":\"arXiv: Atomic Physics\",\"volume\":\"368 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Atomic Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physreva.102.052831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Atomic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physreva.102.052831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Observation of strong two-electron–one-photon transitions in few-electron ions
We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$ reveal strong two-electron--one-photon (TEOP) transitions. We find that for the $[(1s\,2s)_1\,5p_{3/2}]_{3/2;1/2}$ states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states $[(1s\,2p_{3/2})_1\,4s]_{3/2;1/2}$ of a Li-like satellite blend of the He-like $K\alpha$ transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger.